1.Bioinformatics analysis of efferocytosis-related genes in diabetic kidney disease and screening of targeted traditional Chinese medicine.
Yi KANG ; Qian JIN ; Xue-Zhe WANG ; Meng-Qi ZHOU ; Hui-Juan ZHENG ; Dan-Wen LI ; Jie LYU ; Yao-Xian WANG
China Journal of Chinese Materia Medica 2025;50(14):4037-4052
This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed. Consensus clustering was conducted on DKD patients based on the expression levels of DKD-ERGs, and the expression levels, immune infiltration characteristics, and gene set variations between different subtypes were explored. Eight machine learning models were constructed and their prediction performance was evaluated. The best-performing model was evaluated by nomograms, calibration curves, and external datasets, followed by the identification of efferocytosis-related feature genes associated with DKD. Finally, potential TCMs that can regulate these feature genes were predicted. The results showed that the training set contained 640 differentially expressed genes, and after intersecting with ERGs, 12 DKD-ERGs were obtained, which demonstrated mutual regulation and immune modulation effects. Consensus clustering divided DKD into two subtypes, C1 and C2. The support vector machine(SVM) model had the best performance, predicting that growth arrest-specific protein 6(GAS6), S100 calcium-binding protein A9(S100A9), C-X3-C motif chemokine ligand 1(CX3CL1), 5'-nucleotidase(NT5E), and interleukin 33(IL33) were the feature genes of DKD. Potential TCMs with therapeutic effects included Astragali Radix, Trionycis Carapax, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma, which mainly function to clear heat, replenish deficiency, activate blood, resolve stasis, and promote urination and drain dampness. Molecular docking revealed that the key components of these TCMs, including β-sitosterol, quercetin, and sitosterol, exhibited good binding activity with the five target genes. These results indicated that efferocytosis played a crucial role in the development and progression of DKD. The feature genes closely related to both DKD and efferocytosis, such as GAS6, S100A9, CX3CL1, NT5E, and IL33, were identified. TCMs such as Astragali Radix, Trionycis Carapa, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma may provide a new therapeutic strategy for DKD by regulating efferocytosis.
Humans
;
Computational Biology
;
Diabetic Nephropathies/physiopathology*
;
Protein Interaction Maps
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Phagocytosis/genetics*
;
Efferocytosis
2.Bone loss in patients with spinal cord injury: Incidence and influencing factors.
Min JIANG ; Jun-Wei ZHANG ; He-Hu TANG ; Yu-Fei MENG ; Zhen-Rong ZHANG ; Fang-Yong WANG ; Jin-Zhu BAI ; Shu-Jia LIU ; Zhen LYU ; Shi-Zheng CHEN ; Jie-Sheng LIU ; Jia-Xin FU
Chinese Journal of Traumatology 2025;28(6):477-484
PURPOSE:
To investigate the incidence and influencing factors of bone loss in patients with spinal cord injury (SCI).
METHODS:
A retrospective case-control study was conducted. Patients with SCI in our hospital from January 2019 to March 2023 were collected. According to the correlation between bone mineral density (BMD) at different sites, the patients were divided into the lumbar spine group and the hip joint group. According to the BMD value, the patients were divided into the normal bone mass group (t > -1.0 standard deviation) and the osteopenia group (t ≤ -1.0 standard deviation). The influencing factors accumulated as follows: gender, age, height, weight, cause of injury, injury segment, injury degree, time after injury, start time of rehabilitation, motor score, sensory score, spasticity, serum value of alkaline phosphatase, calcium, and phosphorus. The trend chart was drawn and the influencing factors were analyzed. SPSS 26.0 was used for statistical analysis. Correlation analysis was used to test the correlation between the BMD values of the lumbar spine and bilateral hips. Binary logistic regression analysis was used to explore the influencing factors of osteoporosis after SCI. p < 0.05 was considered statistically significant.
RESULTS:
The incidence of bone loss in patients with SCI was 66.3%. There was a low concordance between bone loss in the lumbar spine and the hip, and the hip was particularly susceptible to bone loss after SCI, with an upward trend in incidence (36% - 82%). In this study, patients with SCI were divided into the lumbar spine group (n = 100) and the hip group (n = 185) according to the BMD values of different sites. Then, the lumbar spine group was divided into the normal bone mass group (n = 53) and the osteopenia group (n = 47); the hip joint group was divided into the normal bone mass group (n = 83) and the osteopenia group (n = 102). Of these, lumbar bone loss after SCI is correlated with gender and weight (p = 0.032 and < 0.001, respectively), and hip bone loss is correlated with gender, height, weight, and time since injury (p < 0.001, p = 0.015, 0.009, and 0.012, respectively).
CONCLUSIONS
The incidence of bone loss after SCI was high, especially in the hip. The incidence and influencing factors of bone loss in the lumbar spine and hip were different. Patients with SCI who are male, low height, lightweight, and long time after injury were more likely to have bone loss.
Humans
;
Spinal Cord Injuries/complications*
;
Male
;
Female
;
Retrospective Studies
;
Incidence
;
Adult
;
Bone Density
;
Middle Aged
;
Case-Control Studies
;
Osteoporosis/etiology*
;
Lumbar Vertebrae
;
Bone Diseases, Metabolic/etiology*
;
Aged
;
Risk Factors
3.Differential Resting-State Brain Activity Following Early- and Late-Night Sleep Loss.
Tianqi DI ; Libo ZHANG ; Shiqiu MENG ; Yang GUO ; Wangyue LIU ; Enyu ZHENG ; Zhoulong YU ; Yan SUN ; Jie SHI
Neuroscience Bulletin 2025;41(9):1696-1700
4.Proanthocyanin B2 inhibits oxidative stress and alleviates H2O2 induced damage to human oligodendrocytes through NRF2/HO-1/xCT/GPX4 axis
Jian LIU ; Ying CHEN ; Ya-Jie LIANG ; Meng PU ; Zi-Wei ZHANG ; Lu-Lu ZHENG ; Zhi CHAI ; Ying XIAO ; Cun-Gen MA ; Qing WANG
Chinese Pharmacological Bulletin 2024;40(9):1735-1743
Aim To explore the protective effect of an-thocyanin B2(PCB2)on hydrogen peroxide(H2O2)induced oxidative damage and apoptosis in human oli-godendrocytes(MO3.13)and the underlying mecha-nism.Methods The optimal concentration of H2O2 and PCB2 for action was screened,and divided into normal group,PCB2 group(100 mg·L-1 PCB2 treat-ment for 24 hours),H2 O2 model group(500 μmol·L-1 H2O2 treatment for 24 hours),and H2O2+PCB2 group(500 μmol·L-1 H2O2 and 100 mg·L-1 PCB2 co-treated for 24 hours).FRAP method was used to detect the antioxidant capacity of PCB2;CCK-8 meth-od was used to detect the survival rate of cells in each group,while LDH method was used to assess cytotoxic-ity.Microenzyme-linked immunosorbent assay and ELISA were used to examine the levels of LDH,NO,H2O2,as well as the activities of CAT and SOD in each group of cells.Immunofluorescence and Western blot were used to detect the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4 in each group of cells.FerroOrange fluorescent probe was used to de-tect the intracellular content of ferrous ions(Fe2+).Results H2O2 could induce MO3.13 oxidative dam-age and lead to cell ferroptosis,while PCB2 could alle-viate MO3.13 oxidative damage and ferroptosis.Com-pared with the H2O2 model group,PCB2 intervention could significantly increase LDH content in MO3.13,reduce NO and H2O2 content,and improve SOD and CAT activity,and up-regulate the protein expression levels of NRF2,xCT,HO-1,ferritin,and GPX4.Conclusion PCB2 can enhance cellular antioxidant capacity and alleviate H2O2 induced MO3.13 oxidative damage through the NRF2/HO-1/xCT/GPX4 axis.
5.Epidemiological investigation of iron deficiency among preschool children in 10 provinces, autonomous regions, or municipalities in China
Lei WANG ; Jie SHAO ; Wenhong DONG ; Shuangshuang ZHENG ; Bingquan ZHU ; Qiang SHU ; Wei CHEN ; Lichun FAN ; Jin SUN ; Yue GAO ; Youfang HU ; Nianrong WANG ; Zhaohui WANG ; Tingting NIU ; Yan LUO ; Ju GAO ; Meiling TONG ; Yan HU ; Wei XIANG ; Zhengyan ZHAO ; Meng MAO ; Fan JIANG
Chinese Journal of Pediatrics 2024;62(5):416-422
Objective:To understand the current status of anemia, iron deficiency, and iron-deficiency anemia among preschool children in China.Methods:A cross-sectional study was conducted with a multi-stage stratified sampling method to select 150 streets or townships from 10 Chinese provinces, autonomous regions, or municipalities (East: Jiangsu, Zhejiang, Shandong, and Hainan; Central: Henan; West: Chongqing, Shaanxi, Guizhou, and Xinjiang; Northeast: Liaoning). From May 2022 to April 2023, a total of 21 470 children, including community-based children aged 0.5 to<3.0 years receiving child health care and kindergarten-based children aged 3.0 to<7.0 years, were surveyed. They were divided into 3 age groups: infants (0.5 to<1.0 year), toddlers (1.0 to<3.0 years), and preschoolers (3.0 to<7.0 years). Basic information such as sex and date of birth of the children was collected, and peripheral blood samples were obtained for routine blood tests and serum ferritin measurement. The prevalence rates of anemia, iron deficiency, and iron-deficiency anemia were analyzed, and the prevalence rate differences were compared among different ages, sex, urban and rural areas, and regions using the chi-square test.Results:A total of 21 460 valid responses were collected, including 10 780 boys (50.2%). The number of infants, toddlers, and preschoolers were 2 645 (12.3%), 6 244 (29.1%), and 12 571 (58.6%), respectively. The hemoglobin level was (126.7±14.8) g/L, and the serum ferritin level was 32.3 (18.5, 50.1) μg/L. The overall rates of anemia, iron deficiency, and iron-deficiency anemia were 10.4% (2 230/21 460), 28.3% (6 070/21 460), and 3.9% (845/21 460), respectively. The prevalence rate of anemia was higher for boys than for girls (10.9% (1 173/10 780) vs. 9.9% (1 057/10 680), χ2=5.58, P=0.018), with statistically significant differences in the rates for infants, toddlers and preschoolers (18.0% (475/2 645), 10.6% (662/6 244), and 8.7% (1 093/12 571), respectively, χ2=201.81, P<0.01), and the rate was significantly higher for children in rural than that in urban area (11.8% (1 516/12 883) vs. 8.3% (714/8 577), χ2=65.54, P<0.01), with statistically significant differences in the rates by region ( χ2=126.60, P<0.01), with the highest rate of 15.8% (343/2 173) for children in Central region, and the lowest rate of 5.3% (108/2 053) in Northeastern region. The prevalence rates of iron deficiency were 33.8% (895/2 645), 32.2% (2 011/6 244), and 25.2% (3 164/12 571) in infants, toddlers, and preschoolers, respectively, and 30.0% (3 229/10 780) in boys vs. 26.6% (2 841/10 680) in girls, 21.7% (1 913/8 821), 40.0% (870/2 173), 27.1% (2 283/8 413), 48.9% (1 004/2 053) in Eastern, Central, Western, and Northeastern regions, respectively, and each between-group showed a significant statistical difference ( χ2=147.71, 29.73, 773.02, all P<0.01). The prevalence rate of iron-deficiency anemia showed a significant statistical difference between urban and rural areas, 2.9% (251/8 577) vs. 4.6% (594/12 883) ( χ2=38.62, P<0.01), while the difference in iron deficiency prevalence was not significant ( χ2=0.51, P=0.476). Conclusions:There has been a notable improvement in iron deficiency and iron-deficiency anemia among preschool children in China, but the situation remains concerning. Particular attention should be paid to the prevention and control of iron deficiency and iron-deficiency anemia, especially among infants and children in the Central, Western, and Northeastern regions of China.
6.Expert consensus on the rational application of the biological clock in stomatology research
Kai YANG ; Moyi SUN ; Longjiang LI ; Zhangui TANG ; Guoxin REN ; Wei GUO ; Songsong ZHU ; Jia-Wei ZHENG ; Jie ZHANG ; Zhijun SUN ; Jie REN ; Jiawen ZHENG ; Xiaoqiang LV ; Hong TANG ; Dan CHEN ; Qing XI ; Xin HUANG ; Heming WU ; Hong MA ; Wei SHANG ; Jian MENG ; Jichen LI ; Chunjie LI ; Yi LI ; Ningbo ZHAO ; Xuemei TAN ; Yixin YANG ; Yadong WU ; Shilin YIN ; Zhiwei ZHANG
Journal of Practical Stomatology 2024;40(4):455-460
The biological clock(also known as the circadian rhythm)is the fundamental reliance for all organisms on Earth to adapt and survive in the Earth's rotation environment.Circadian rhythm is the most basic regulatory mechanism of life activities,and plays a key role in maintaining normal physiological and biochemical homeostasis,disease occurrence and treatment.Recent studies have shown that the biologi-cal clock plays an important role in the development of oral tissues and in the occurrence and treatment of oral diseases.Since there is cur-rently no guiding literature on the research methods of biological clock in stomatology,researchers mainly conduct research based on pub-lished references,which has led to controversy about the research methods of biological clock in stomatology,and there are many confusions about how to rationally apply the research methods of circadia rhythms.In view of this,this expert consensus summarizes the characteristics of the biological clock and analyzes the shortcomings of the current biological clock research in stomatology,and organizes relevant experts to summarize and recommend 10 principles as a reference for the rational implementation of the biological clock in stomatology research.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.

Result Analysis
Print
Save
E-mail