1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network
Hao-Yang TANG ; Xin-Yue YAO ; Meng-Meng WANG ; Si-Cong YANG
Progress in Biochemistry and Biophysics 2025;52(9):2417-2427
ObjectiveThis study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy. MethodsFirst, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance. ResultsExperimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model’s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments. ConclusionThe integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
8.Experience of LIU Qingguo in treating pediatric tic disorders with scalp fire needling.
Yi YANG ; Meng XU ; Yu GONG ; Jipeng LIU ; Bingnan YUE ; Songli LI ; Xueming BAI ; Qingguo LIU
Chinese Acupuncture & Moxibustion 2025;45(5):683-687
Professor LIU Qingguo's academic thoughts and clinical experience in treating pediatric tic disorders with scalp fire needling is introduced. Professor LIU believes that the core pathogenesis of this disease lies in "wind stirring and qi disorder, leading to the spirit failing to govern the body". Therefore, treatment should focus on "regulating the spirit to stabilize the form and extinguishing wind to stop movement". Clinically, the main acupoints include Shenting (GV24), Benshen (GB13), Xinhui (GV22), Baihui (GV20), Sishencong (EX-HN1), Fengchi (GB20), and Fengfu (GV16), which are rapidly punctured with fine fire needles, leading to significant therapeutic efficacy.
Humans
;
Acupuncture Therapy/methods*
;
Child
;
Tic Disorders/therapy*
;
Acupuncture Points
;
Male
;
Scalp
;
Female
;
Adolescent
;
Child, Preschool
9.Characteristics, microbial composition, and mycotoxin profile of fermented traditional Chinese medicines.
Hui-Ru ZHANG ; Meng-Yue GUO ; Jian-Xin LYU ; Wan-Xuan ZHU ; Chuang WANG ; Xin-Xin KANG ; Jiao-Yang LUO ; Mei-Hua YANG
China Journal of Chinese Materia Medica 2025;50(1):48-57
Fermented traditional Chinese medicine(TCM) has a long history of medicinal use, such as Sojae Semen Praeparatum, Arisaema Cum Bile, Pinelliae Rhizoma Fermentata, red yeast rice, and Jianqu. Fermentation technology was recorded in the earliest TCM work, Shen Nong's Classic of the Materia Medica. Microorganisms are essential components of the fermentation process. However, the contamination of fermented TCM by toxigenic fungi and mycotoxins due to unstandardized fermentation processes seriously affects the quality of TCM and poses a threat to the life and health of consumers. In this paper, the characteristics, microbial composition, and mycotoxin profile of fermented TCM are systematically summarized to provide a theoretical basis for its quality and safety control.
Fermentation
;
Mycotoxins/analysis*
;
Drugs, Chinese Herbal/analysis*
;
Fungi/classification*
;
Bacteria/genetics*
;
Drug Contamination
;
Medicine, Chinese Traditional
10.Protective effect of ethyl syringate against ulcerative colitis based on JAK2/STAT3 pathway.
Meng-di LIANG ; Yue-Run LIANG ; Jin CHENG ; Ya-Ping YANG ; Xuan XIA ; Wen-Zhe YANG ; Jie-Jie HAO
China Journal of Chinese Materia Medica 2025;50(10):2778-2786
To study the therapeutic effect and mechanisms of ethyl syringate(MD) on ulcerative colitis(UC), the MTT assay was used to detect the proliferation inhibition of RAW264.7 cells and HT-29 cells by different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)). UC cell models were constructed by inducing RAW264.7 cells and HT-29 cells with lipopolysaccharide(LPS) and tumor necrosis factor-α(TNF-α). An animal model was established by inducing mice with 2.5% dextran sulfate sodium(DSS) to verify the therapeutic effect of MD on UC. A control group, a model group(LPS or TNF-α), and groups treated with different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)) were set up in this study. Nitric oxide(NO) levels were measured using a NO detection kit. Intracellular reactive oxygen species(ROS) levels were assessed using a laser confocal microscope and ROS kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect changes in the levels of interleukin-6(IL-6), TNF-α, interferon-γ(INF-γ), interleukin-10(IL-10), and myeloperoxidase(MPO) in cells and animal tissues. Western blot was used to detect the expression levels of phosphorylated Janus kinase 2(p-JAK2), Janus kinase 2(JAK2), phosphorylated signal transducer and activator of transcription 3(p-STAT3), signal transducer and activator of transcription 3(STAT3), zonula occludens-1(ZO-1), occludin, and claudin-1 in cells and animal tissues. The results showed that MD can improve the inflammatory response by inhibiting the production of NO and ROS and regulating the expression of inflammatory factors. It significantly reduced the disease activity index(DAI) in mice, improved the shortening of the colon, and repaired intestinal epithelial damage by inhibiting the activation of the JAK2/STAT3 pathway, thereby exerting anti-UC activity.
Animals
;
Colitis, Ulcerative/chemically induced*
;
Janus Kinase 2/genetics*
;
STAT3 Transcription Factor/genetics*
;
Mice
;
Humans
;
Signal Transduction/drug effects*
;
Male
;
RAW 264.7 Cells
;
Reactive Oxygen Species/metabolism*
;
Nitric Oxide/metabolism*
;
HT29 Cells
;
Salicylates/administration & dosage*
;
Protective Agents/administration & dosage*

Result Analysis
Print
Save
E-mail