1.Roles of reactive oxygen species and lactate dehydrogenase isoenzyme X in changes of sperm mitochondrial membrane in patients with varicocele-induced infertility.
Xiao-Xia ZHANG ; Ru-Yao LI ; Liang-Liang YU ; Jun ZHOU
National Journal of Andrology 2025;31(1):19-24
OBJECTIVE:
To explore the role of reactive oxygen species (ROS) and lactate dehydrogenase isoenzyme X (LDH-X) in the changes of sperm mitochondrial membrane potential (MMP) in infertility patients with varicocele (VC).
METHODS:
This study included 38 infertility patients with VC (VCinf), 35 non-VC infertile males (NVCinf), and 30 normal fertile men as controls. We obtained the routine semen parameters using the sperm quality analysis system, examined the contents of LDH-X in the seminal plasma and sperm with the automatic biochemical analyzer, measured the level of malondialdehyde (MDA) in seminal plasma by thiobarbituric acid (TBA) colorimetry, and determined the expressions of mitochondrial membrane potential (MMP) and LDH-X mRNA in the sperm using JC-1 fluorescence probe and RT-PCR.
RESULTS:
No statistically significant differences were observed among the three groups of subjects in age, semen pH value, semen volume and sperm concentration (P > 0.05). Compared with the normal fertile controls, the patients in the VCinf and NVCinf groups showed significantly decreased sperm motility ([52.36 ± 12.48]% vs [34.74 ± 15.23]% vs [25.76 ± 13.73]%, P< 0.05), percentage of progressively motile sperm (PMS) ([42.54 ± 13.58]% vs [29.10 ± 14.17]% vs [20.95 ± 12.33]%, P< 0.05), sperm LDH-X ([16.46 ± 5.47] vs [13.63 ± 4.50] vs [10.18 ± 3.00] mU/106, P< 0.05), sperm MMP ([48.04 ± 11.62]% vs [40.86 ± 12.69]% vs [34.41 ± 13.93]%, P< 0.05) and expression of sperm LDH-X mRNA (P< 0.05). but increased seminal plasma LDH-X ([935.36 ± 229.48] vs [1241.05 ± 337.07] vs [1425.08 ± 469.35] U/L, P< 0.05), seminal plasma/whole sperm LDH-X ([1.06 ± 0.35] vs [1.40 ± 0.34] vs [1.63 ± 0.66], P< 0.05), and content of seminal plasma MDA ([1.10 ± 0.19] vs [1.59 ± 0.27] vs [2.00 ± 0.22] nmol/ml, P< 0.05).
CONCLUSION
Excessive ROS in the reproductive system of VCinf patients reduces the content of MMP and causes the overflow of LDH-X out of sperm cells. Therefore the decrease of sperm LDH-X may be accompanied by that of MMP.
Humans
;
Male
;
Infertility, Male/etiology*
;
Varicocele/metabolism*
;
Adult
;
Reactive Oxygen Species/metabolism*
;
Spermatozoa/metabolism*
;
L-Lactate Dehydrogenase/metabolism*
;
Membrane Potential, Mitochondrial
;
Isoenzymes/metabolism*
;
Case-Control Studies
;
Young Adult
;
Mitochondrial Membranes/metabolism*
2.Chrysophanol Induces Cell Death and Inhibits Invasiveness through Alteration of Calcium Levels in HepG2 Human Liver Cancer Cells.
Shu-Chao CHEN ; Qiao-Wen CHEN ; Chih-Yuan KO
Chinese journal of integrative medicine 2025;31(5):434-440
OBJECTIVE:
To investigate the effect of chrysophanol, a phytochemical derived from Radix et Rhizoma Rhei on HepG2 liver cancer cells.
METHODS:
HepG2 cell line was treated with different concentrations chrysophanol (0-100 μmol/L) for 24 h. The cell counting kit 8 assay was employed to assess cell viability. Intracellular calcium levels were examined using Fluo-4 AM and Mag-fluo-4 AM staining, followed by flow cytometry analysis. Mitochondrial membrane potential was measured with JC-1 assay kit. Additionally, the expressions of key proteins such as p-JNK, Bax, cytochrome c (Cyt C), cleaved caspase-3 (cCaspase-3), and caspase-8 were analyzed by Western blot. The inhibitory effects of chrysophanol on the invasion of cells were determined using a Transwell assay. Analysis of invasiveness was conducted by wound healing assay.
RESULTS:
Chrysophanol significantly reduced the proliferation of HepG2 liver cancer cells by affecting intracellular calcium distribution, diminishing mitochondrial membrane potential, and enhancing the expressions of p-JNK, Bax, Cyt C, cCaspase-3, and caspase-8 in the groups treated with 75 or 100 μmol/L chrysophanol compared to the control group (P<0.05). Additionally, 75 and 100 μmol/L chrysophanol exhibited inhibitory effects on cell migration and wound healing.
CONCLUSION
Chrysophanol demonstrates potential against HepG2 liver cancer cells, suggesting its potential use as a therapeutic agent for liver cancer treatment.
Humans
;
Calcium/metabolism*
;
Hep G2 Cells
;
Liver Neoplasms/metabolism*
;
Neoplasm Invasiveness
;
Membrane Potential, Mitochondrial/drug effects*
;
Anthraquinones/pharmacology*
;
Cell Proliferation/drug effects*
;
Cell Death/drug effects*
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Cell Survival/drug effects*
3.Dexmedetomidine attenuates heat stress-induced oncosis in human skeletal muscle cells by activating the Nrf2/Ho-1 pathway.
Yang LIU ; Yiqing JIA ; Chengcheng LI ; Handing MAO ; Shuyuan LIU ; Yi SHAN
Journal of Southern Medical University 2025;45(3):603-613
OBJECTIVES:
To investigate the protective effects of dexmedetomidine (DEX) against heat stress (HS)-induced oncosis in human skeletal muscle cells (HSKMCs) and its underlying mechanisms.
METHODS:
A HSKMC model of HS-induced oncosis were established by 43 ℃ water bath for 4 h, and the effects of treatments with 30 μmol/L DEX, ML385 (a Nrf2 inhibitor) +DEX, si-Nrf2+HS, and si-Nrf2+DEX prior to modeling on cell viability was assessed using CCK-8 assay. Oncosis characteristics were evaluated using transmission electron microscopy and Annexin V-FITC/PI flow cytometry. The oxidative stress markers (GSH, GSH-Px, MDA, SOD and ROS), mitochondrial membrane potential, energy metabolism, and inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the cells were quantified using standard kits, and the expressions of porimin, caspase-3 and Nrf2 pathway proteins were analyzed using Western blotting and qRT-PCR.
RESULTS:
HS induced typical oncotic features in HSKMCs including organelle swelling and cytoplasmic vacuolization. DEX pretreatment significantly attenuated these changes, reduced Annexin V+/PI+ cell ratio and cellular porimin expression, and lowered the levels of ROS and MDA while restoring GSH and SOD levels. DEX pretreatment also significantly increased the mitochondrial membrane potential and ATP level, upregulated the expressions of Nrf2, p-Nrf2, HO-1 and NQO1, and suppressed the expressions of TNF-α, IL-6 and IL-1β. The protective effects of DEX were obviously attenuated by interventions with ML385 or si-Nrf2.
CONCLUSIONS
DEX mitigates HS-induced HSKMC oncosis by activating the Nrf2/HO-1 pathway to relieve oxidative stress, mitochondrial dysfunction, and inflammatory responses.
Humans
;
Dexmedetomidine/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Heat-Shock Response/drug effects*
;
Signal Transduction/drug effects*
;
Membrane Potential, Mitochondrial
;
Muscle, Skeletal/cytology*
;
Heme Oxygenase-1/metabolism*
;
Apoptosis/drug effects*
4.Astragaloside IV alleviates D-GAL-induced endothelial cell senescence by promoting mitochondrial autophagy via inhibiting the PINK1/Parkin pathway.
Ming YI ; Ye LUO ; Lu WU ; Zeheng WU ; Cuiping JIANG ; Shiyu CHEN ; Xiao KE
Journal of Southern Medical University 2025;45(11):2427-2437
OBJECTIVES:
To explore the mechanism by which astragaloside IV (AS-IV) alleviates D-galactose (D-GAL)-induced senescence in human umbilical vein endothelial cells (HUVECs).
METHODS:
Cultured HUVECs were treated with D-GAL (40 g/L), AS-IV (200 μmol/L), D-GAL+AS-IV, or D-GAL+AS-IV+MTK458 (a mitochondrial autophagy agonist, 25 μmol/L) for 48 h, and the changes in cell proliferation, migration, and angiogenesis capacity were evaluated. Cell apoptosis, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and expressions of autophagy-related proteins (LC3-II/LC3-I) and PINK1/Parkin pathway proteins in the treated cells were detected.
RESULTS:
AS-IV treatment significantly reduced the inhibitory effect of D-GAL on HUVEC viability, effectively alleviated D-GAL-induced impairment of tube-forming ability, and promoted angiogenesis and migration ability of the cells. AS-IV also significantly reduced the rate of D-GAL-induced HUVECs positive for senescence-associated β-galactosidase (SA-β-Gal) staining and inhibited the expression of senescence-related genes P21 and P53. AS-IV restored mitochondrial membrane potential and reduced intracellular ROS levels in D-GAL-induced HUVECs, and inhibited the fusion of autophagosomes and lysosomes to prevent the completion of autophagic flux. In HUVECs treated with both D-GAL and AS-IV, the application MTK458 significantly increased the number of yellow spots and enhanced the expressions of P21, P53, PINK1, Parkin, LC3, and Beclin proteins.
CONCLUSIONS
AS-IV alleviates D-GAL-induced endothelial cell senescence by inhibiting the PINK1/Parkin pathway to regulate mitochondrial autophagy.
Humans
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Cellular Senescence/drug effects*
;
Autophagy/drug effects*
;
Saponins/pharmacology*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mitochondria/drug effects*
;
Triterpenes/pharmacology*
;
Protein Kinases/metabolism*
;
Galactose/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction/drug effects*
;
Cells, Cultured
;
Apoptosis/drug effects*
;
Membrane Potential, Mitochondrial
;
Cell Proliferation/drug effects*
5.Study on the effects of telomerase reverse transcriptase in alleviating doxorubicin induced cardiotoxicity.
Qingqing GU ; Qianwe CHEN ; Yu WANG ; Dabei CAI ; Tingting XIAO ; Qingjie WANG ; Ling SUN
Chinese Critical Care Medicine 2025;37(6):583-589
OBJECTIVE:
To investigate the role of telomerase reverse transcriptase (TERT) in alleviating doxorubicin (DOX)-induced cardiotoxicity.
METHODS:
(1) Cell experiments: rat H9c2 cardiomyocytes were divided into control group (CON group), null adenovirus transfection group (NC group), TERT overexpression adenovirus transfection group (TERT group), DOX group (treated with 1 μmol/L DOX for 12 hours), DOX+NC group, and DOX+TERT group (null adenovirus or TERT overexpression adenovirus were transfected for 24 hours and then treated with 1 μmol/L DOX for 12 hours). The mRNA expression of TERT in cardiomyocytes was detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The level of mitochondrial membrane potential was detected by immunofluorescence. The expression levels of intracellular Bax, Bcl-2, microtubule-associated protein 1 light chain 3 (LC3) and p62 were detected by Western blotting. (2) Animal experiments: male C57BL/6 mice were randomly divided into a sham operation group (Sham group), DOX group (acute cardiotoxicity model was constructed by intraperitoneal injection of DOX 15 mg/kg), DOX+NC group and DOX+TERT group (modeled after transfection with airborne adenovirus or TERT overexpression adenovirus for 7 days). After 7 days of modeling, the area of myocardial fibrosis was detected by Sirius scarlet staining, and cardiac function was detected by echocardiography.
RESULTS:
(1) Cellular experiments: the mRNA expression level of TERT was significantly higher in the TERT group compared with the CON and NC groups. Compared with the CON group, the TERT mRNA expression level of cardiomyocytes in the DOX group and the DOX+NC group were significantly lower, the level of mitochondrial membrane potential was significantly lower, the protein expressions of Bax and LC3 were significantly increased, and the protein expressions of Bcl-2 and p62 were significantly decreased. No significant differences were found between the DOX group and DOX+NC group. Compared with the DOX group and DOX+NC group, the TERT mRNA expression level was increased in the DOX+TERT group (relative expression: 1.02±0.10 vs. 0.61±0.05, 0.54±0.03, both P < 0.05), the level of mitochondrial membrane potential was significantly increased (1.14±0.05 vs. 0.96±0.01, 0.96±0.01, both P < 0.05), the protein expressions of Bax and LC3 were significantly decreased, and the protein expressions of Bcl-2 and p62 were significantly increased (Bax/β-actin: 0.88±0.01 vs. 1.31±0.02, 1.26±0.01; LC3-II/I: 2.16±0.05 vs. 2.64±0.06, 2.58±0.02; Bcl-2/β-actin: 0.65±0.01 vs. 0.40±0.01, 0.41±0.01; p62/β-actin: 0.45±0.01 vs. 0.23±0.02, 0.29±0.01; all P < 0.05). (2) Animal experiments: compared with the Sham group, the percentage of myocardial fibrosis area was significantly increased and left ventricular ejection fraction (LVEF) and fractional shortening (FS) were significantly decreased in the DOX group and DOX+NC group. Compared with the DOX group and DOX+NC group, the percentage of myocardial fibrotic area was significantly decreased in the DOX+TERT group (%: 2.33±0.06 vs. 3.76±0.07, 3.87±0.06, both P < 0.05), and the LVEF and FS were significantly increased [LVEF (%): 67.00±1.14 vs. 54.60±1.57, 53.40±2.18; FS (%): 38.60±0.51 vs. 30.60±1.10, 30.00±0.71; all P < 0.05].
CONCLUSION
Up-regulation of TERT expression can inhibit DOX-induced cardiomyocyte autophagy and apoptosis, attenuate DOX-induced myocardial fibrosis in mice, improve cardiac function, and thus alleviate DOX-induced cardiotoxicity.
Animals
;
Doxorubicin/toxicity*
;
Telomerase/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Rats
;
Male
;
Cardiotoxicity
;
Mice, Inbred C57BL
;
Mice
;
Membrane Potential, Mitochondrial
;
Adenoviridae
;
bcl-2-Associated X Protein/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Transfection
;
Apoptosis
6.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
7.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
8.Protective mechanism of Chaihu Shugan San against CORT-induced damage in PC12 cells based on mitochondrial dynamics.
Ling-Yuan ZHANG ; Qi-Qi ZHENG ; Jia-Li SHI ; Pei-Fang WANG ; Jia-Li LU ; Jian-Ying SHEN
China Journal of Chinese Materia Medica 2025;50(16):4546-4554
In this report, the protective effect and molecular mechanism of Chaihu Shugan San-containing serum on corticosterone(CORT)-induced mitochondrial damage in pheochromocytoma(PC12) cells was studied based on CORT-induced rat PC12 cell model. The cultured cells were divided into five groups: blank control group, CORT group(400 μmol·L~(-1) CORT), Chaihu Shugan San-containing serum group(400 μmol·L~(-1) CORT + 10% Chaihu Shugan San-containing serum), control serum group(400 μmol·L~(-1) CORT + 10% control serum), and fluoxetine group(400 μmol·L~(-1) CORT + 10% fluoxetine-containing serum). The study was carried out by cell activity detection, mitochondrial morphology observation, membrane potential measurement, energy metabolism analysis, and mitochondrial dynamics-related protein detection. The results showed that CORT treatment significantly reduced the survival rate of PC12 cells, altered mitochondrial morphology, and decreased mitochondrial membrane potential and adenosine triphosphate(ATP) synthetic rate. Both Chaihu Shugan San-and fluoxetine-containing serum significantly increased the survival rate of CORT-treated PC12 cells and the ATP synthetic rate in the mitochondria. Unlike fluoxetine, Chaihu Shugan San-containing serum significantly inhibited the decrease in mitochondrial membrane potential caused by CORT and increased the oxygen consumption rate(OCR) values of both mitochondrial maximum respiration and reserve respiration capacity. Western blot analysis showed that CORT induced upregulated protein expressions of dynamin-related protein 1(Drp1) and peroxisome proliferator-activated receptor gamma co-activator 1α(PGC-1α) in PC12 cells and specific protein expression of optic atrophy protein 1(OPA1), yet it repressed the protein expressions of silent information regulator 1(SIRT1) and mitochondrial fusion protein 1(Mfn1) in PC12 cells. Both Chaihu Shugan San-and fluoxetine-containing serum significantly inhibited the protein expression of Drp1. However, only Chaihu Shugan San-containing serum could significantly inhibit the CORT-induced upregulation protein of PGC-1α. RESULTS:: herein suggest that Chaihu Shugan San-containing serum can alleviate CORT-induced damage in PC12 cells, which may be related to the mitochondrial fragmentation/lipid peroxidation protection by Drp1 inhibition, as well as mitochondrial dynamics and energy metabolism mediated by PGC-1α/SIRT1 signaling pathway.
Animals
;
PC12 Cells
;
Rats
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Corticosterone/adverse effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Protective Agents/pharmacology*
;
Cell Survival/drug effects*
9.Impact of tyrosine phosphorylation site mutation in FUNDC1 protein on mitophagy in H9c2 cardiomyocytes.
Zhaoyang ZHANG ; Yanli YU ; Jieyun WU ; Wei TIAN ; Jingman XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):629-636
Objective To investigate the effect of FUNDC1 tyrosine phosphorylation site mutations on mitophagy in H9c2 myocardial cells by constructing tyrosine site mutant plasmids (Y11 and Y18) of the FUN14 domain-containing protein 1 (FUNDC1). Methods The mutant plasmids constructed by whole-gene synthesis were transfected into rat myocardial H9c2 cells and divided into five groups: empty plasmid group, FUNDC1 overexpression group, Y11 mutant group, Y18 mutant group, and Y11 combined with Y18 mutant group. The viability of H9c2 cells was assessed using the CCK-8 assay. Additionally, tetramethylrhodamine ethyl ester (TMRE) staining was utilized to detect mitochondrial membrane potential. The protein expression levels of FUNDC1, translocase of the outer mitochondrial membrane 20 (TOM20), and cytochrome c oxidase IV (COX IV) were detected by Western blot analysis. Confocal microscopy was used to evaluate transfection efficiency as well as the co-localization of mitochondria and lysosomes. Results The FUNDC1 overexpression, Y11, Y18, and Y11 combined with Y18 mutant plasmids were successfully constructed. After plasmid transfection, widespread GFP fluorescence expression was observed under confocal microscopy. Compared with the empty plasmid group, FUNDC1 protein expression levels were significantly increased in the FUNDC1 overexpression group, Y11 mutation group, Y18 mutation group, and Y11 combined with Y18 mutation group, while cell viability and mitochondrial membrane potential showed no significant changes. Compared to the empty plasmid group, cells transfected with Y18 and Y11 combined with Y18 mutant plasmids showed increased TOM20 and COX IV expression levels and decreased mitochondrial-lysosomal co-localization. Conclusion Transfection with FUNDC1 Y18 or Y11 combined with Y18 mutant plasmids inhibited mitophagy in H9c2 myocardial cells.
Animals
;
Rats
;
Mitophagy/genetics*
;
Myocytes, Cardiac/cytology*
;
Mitochondrial Proteins/metabolism*
;
Mutation
;
Phosphorylation
;
Tyrosine/genetics*
;
Cell Line
;
Membrane Proteins/metabolism*
;
Membrane Potential, Mitochondrial
10.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial

Result Analysis
Print
Save
E-mail