2.Effect of oxidative damage to human sperm in vitro on mitochondrial tRNa LeuUUR gene.
Jian-hua SUN ; Jun-ping XING ; Qi-fei WU ; Wei XUE ; Xin-yang WANG
National Journal of Andrology 2006;12(12):1084-1087
OBJECTIVETo study the oxidative damage to human sperm mitochondrial tRNA LeuUUR gene by reactive oxygen species (ROS) in vitro.
METHODSSpermatozoa of normal physiological function selected from semen samples by Percoll gradient centrifugation technique were used as normal sperm models, which were divided into two groups of 20 cases each, a damage group and a control group, the former treated with hypoxanthine xanthine oxidase system and the latter left untreated, both incubated at 37 degrees C in aerobic environment for 60 minutes. Sperm DAN was extracted, and digestion by the enzymes fpg and ligation-mediated PCR ( LM-PCR) was performed to map the damage to mitochondrial tRNA LeuUUR gene. The spermatozoa were labeled with specific fluorescent probe of Rhodamine 123 to measure mitochondrial membrane potential ( MMP) by flow cytometry and observe sperm function.
RESULTSCompared with the control group, after the normal spermatozoa were incubated with ROS, MMP of the spermatozoa significantly decreased ( 116. 27+/-11.72 vs 64.00+/-4. 88) , P <0.05. Digestion by the enzymes fpg and LM-PCR showed damage to mitochondrial tRNA LeuUUR, gene.
CONCLUSIONReactive oxygen species may inflict oxidative damage on sperm mitochondrial tRNA LeuUUR gene and thus affect sperm function ( as shown by significant decrease in MMP), resulting in infertility.
Adult ; Genes, Mitochondrial ; Humans ; In Vitro Techniques ; Male ; Membrane Potential, Mitochondrial ; physiology ; RNA, Transfer ; Reactive Oxygen Species ; Sperm Motility ; Spermatozoa ; drug effects ; physiology
3.Kinetin inhibits apoptosis of aging spleen cells induced by D-galactose in rats.
Mengyun LI ; Wuqing OUYANG ; Xiaoli WU ; Yin ZHENG ; Yunpeng WEI ; Lei AN
Journal of Veterinary Science 2014;15(3):353-359
Kinetin (Kn) is a cytokinin growth factor that exerts several anti-aging and antioxidant effects on cells and organs. To investigate the mechanism underlying apoptotic events in aging cells induced by D-galactose (D-gal), we examined the effect of Kn delivered via nuchal subcutaneous injection on D-gal-induced aging and apoptosis in rats. Our results showed that interleukin (IL)-2 levels and mitochondrial membrane potential (DeltaPsim) were decreased by Kn in aging rats while IL-6 production and apoptosis increased. In addition, the expression of anti-apoptotic Bcl-2 was low while that of Bax was high in the aging group. After treated with Kn, compared with aging group, there showed obvious difference in Kn group with elevated IL-2, proliferation index, Bcl-2, DeltaPsim and decreased IL-6 and Bax in splenic lymphocyte. Based on these results, we concluded that Kn can effectively protect the rat spleen from aging, apoptosis, and atrophy.
Aging/drug effects/physiology
;
Animals
;
Apoptosis/drug effects/*physiology
;
Female
;
Galactose/*pharmacology
;
Interleukin-6/physiology
;
Interleukins/physiology
;
Kinetin/pharmacology/*physiology
;
Male
;
Membrane Potential, Mitochondrial/drug effects/physiology
;
Rats
;
Spleen/*cytology/drug effects/physiology
4.Peripheral benzodiazepine receptor agonist Ro5-4864 inhibits mitochondrial permeability transition in rat heart.
Jing-Yuan LI ; Jun-Ke WANG ; Yin-Ming ZENG
Acta Physiologica Sinica 2007;59(1):13-18
Opening of mitochondrial permeability transition (MPT) pores leads to mitochondrial injury during oxidative stress. The peripheral benzodiazepine receptor (PBR) located at mitochondrial outer-membrane has been shown to be involved in several mitochondrial functions. In the present study, we used Ro5-4864, a PBR agonist, to test if activation of PBR could prevent MPT pore opening during Ca(2+) overloading. Cardiac mitochondria isolated from Sprague-Dawley rats were treated by 150 mmol/L Ca(2+) to induce MPT. Ro5-4864 (50, 100 and 200 micromol/L) was added into incubation buffer before adding 150 micromol/L Ca(2+). In additional group, atractyloside (ATR, 20 micromol/L), an opener of MPT pores was added 5 min before the addition of 100 micromol/L Ro5-4864. The change of absorbance at 520 nm was monitored with a spectrophotometer at 30 degrees C for 10 min. Western blot was used to detect cytochrome C loss. The mitochondrial membrane potential was monitored with the fluorescence dye JC-1. Ro5-4864 inhibited the decrease of absorbance at 520 nm compared to that in the untreated Ca(2+) group (P<0.01, P<0.05). In the presence of ATR, Ro5-4864 was not able to prevent MPT anymore. Opening of MPT pores by Ca(2+) decreased the content of cytochrome C in mitochondria, but increased cytochrome C content in cytosol. Ro5-4864 preserved cytochrome C content in mitochondria and led to less cytochrome C release to cytosol. ATR treatment reversed the protective effect of Ro5-4864 on cytochrome C content. Opening of MPT pores led to mitochondrial depolarization, whereas Ro5-4864 treatment maintained mitochondrial membrane potential. Thus, prevention of MPT by activation of PBR during calcium overloading maintains mitochondrial cytochrome C content and membrane potential. Activation of PBR during cardiac ischemia and reperfusion may be an alternative way for cardioprotection.
Animals
;
Atractyloside
;
pharmacology
;
Benzodiazepinones
;
pharmacology
;
Carrier Proteins
;
agonists
;
metabolism
;
physiology
;
Female
;
Male
;
Membrane Potential, Mitochondrial
;
physiology
;
radiation effects
;
Mitochondria, Heart
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
metabolism
;
physiology
5.Effect of human granulysin on apoptosis, mitochondrial transmembrane potential and cytochrome C release of SMMC-7721 cells.
Zheng-Jun YI ; Yu-Rong FU ; Jun-Ming LI
Chinese Journal of Hepatology 2008;16(8):604-607
OBJECTIVETo construct a plasmid carrying granulysin (GLS) and to study the effect of the GLS on apoptosis, mitochondrial transmembrane potential and cytochrome C release of SMMC-7721 cells.
METHODSThe coding sequence of the GLS was amplified from the total RNA of human CTL cells, and it was inserted into pBudCE4.1 plasmid and then it was used to transfect SMMC-7721 cells. The expression of GLS was detected by RT-PCR and confirmed by immunocytochemistry method. Cell apoptosis was ascertained by Hoechst staining and electron microscopy; mitochondrial transmembrane potential was detected using Mitocapture and cytochrome C release was studied using Western blot.
RESULTSRecombinant pBudCE4.1/GLS plasmid was successfully constructed. GLS protein was successfully expressed in the SMMC-7721 cells and it induced apoptosis of the SMMC-7721 cells, and at the same time, mitochondrial transmembrane potential was reduced and cytochrome C was released from mitochondria into the cytosol.
CONCLUSIONSGLS gene carried by recombinant plasmid could express in SMMC-7721 cells and induce cells apoptosis. The change of mitochondrial transmembrane potential and the release of cytochrome C might be one of the key factors of apoptosis induced by GLS.
Antigens, Differentiation, T-Lymphocyte ; pharmacology ; Apoptosis ; drug effects ; Cell Line, Tumor ; Cytochromes c ; metabolism ; Humans ; Membrane Potential, Mitochondrial ; drug effects ; Mitochondria ; drug effects ; metabolism ; physiology
6.Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells.
Changzhong WANG ; Ning HAN ; Zhenhua XU ; Huijuan CHENG ; Yan GUAN ; Yun YUN ; Yan WANG
China Journal of Chinese Materia Medica 2012;37(3):362-365
OBJECTIVETo detect the effect of andrographolide on apoptosis of Candida albicans biofilm dispersion cells.
METHODThe morphological changes of apoptotic C. albicans biofilm cells were observed by using Hoechst 33258 staining Fluorescence microscope; changes of mitochondrial membrane potential (MMP) of C. albicans biofilm cells were detected by rhodamine 123 staining flow cytometry; and reactive oxygen species (ROS) was detected by DHR staining flow cytometry.
RESULT1 000, 100 micromol x L(-1) of andrographolide could cause pyknosis and dense staining of C. albicans biofilm cells, 1 000, 100, 10 micromol x L(-1) of andrographolide could decrease MMP and increase ROS of C. albicans biofilm cells.
CONCLUSIONAndrographolide of appropriate concentrations could induce apoptosis of dispersion cells of C. albicans biofilms.
Antifungal Agents ; pharmacology ; Apoptosis ; drug effects ; Biofilms ; Candida albicans ; drug effects ; physiology ; Diterpenes ; pharmacology ; Membrane Potential, Mitochondrial ; drug effects ; Reactive Oxygen Species ; metabolism
7.Wuzi yanzong pills increases sperm mitochondrial membrane potential and protects its ultrastructure in oligo-asthenozoospermia model rats.
Tong-Sheng WANG ; Jin-Ling HUANG ; De-Ling WU ; Qing LI ; Xiang-Guo LIU ; Wen HU
National Journal of Andrology 2013;19(5):446-450
OBJECTIVETo study the effects of Wuzi Yanzong Pills (WYP) on sperm mitochondrial membrane potential (MMP) and its ultrastructure in oligo-asthenozoospermia model rats.
METHODSOligo-asthenozoospermia models were made in 50 male rats weighing 200 - 220 g by intragastric administration of Tripterygium Glucosides at 30 mg per kg per d for 8 weeks, and then equally allocated to a model control, a Huangjing Zanyu Capsule (HZC) control, a low-dose WYP, a medium-dose WYP, and a high-dose WYP group. Another 10 age-matched normal male rats were included as normal controls. The rats in the model and normal control groups were given intragastrically distilled water at 10 ml/kg, those in the HZC group administered HZC at 3.01 g/kg, and those in the low-, medium- and high-dose WYP groups medicated with WYP at 2.30, 4.60 and 9.20 g/kg, respectively, once daily for 30 days. At 30 minutes after the last administration, we detected the sperm MMP by JC-1 fluorescent staining and flow cytometry, and examined the sperm ultrastructure under the JEM-1230 transmission electron microscope.
RESULTSJC-1 + % and its fluorescence intensity were (33.77 +/- 6.19)% and 1 468 +/- 496 in the model control, (56.34 +/- 10.35)% and 3 277 +/- 895 in the HZC control, (40.80 +/- 10.40)% and 2 016 +/- 767 in the low-dose WYP, (59.40 +/- 6.51)% and 3 897 +/- 643 in the medium-dose WYP, and (60.71 +/- 7.81)% and 3 371 +/- 647 in the high-dose WYP group, significantly reduced in comparison with (70.80 +/- 4.92)% and 4 360 +/- 945 in the normal control group (P < 0.05), but remarkably higher in the medium- and high-dose WYP groups than in the model controls (P < 0. 05). After modeling, the sperm membrane was loose and degenerated, the mitochondria swelling, variously sized and with incomplete membrane, and the axonemal structure unclear or ruptured. After 30 days of WYP administration, compared with the model control group, the rats exhibited integrated sperm membrane and mitochondrial membrane, reduced mitochondrial swelling and basically normal axonemal and microtubular structures.
CONCLUSIONTripterygium Glucosides could decrease the sperm mitochondrial membrane potential and damage the mitochondrial structure, while WYP could significantly increase the sperm mitochondrial membrane potential and reduce the sperm mitochondrial structure damage. The protection of the integrity of sperm mitochondrial structure and function is one of the mechanisms of WYP acting on oligo-asthenozoospermia.
Animals ; Asthenozoospermia ; pathology ; physiopathology ; Drugs, Chinese Herbal ; pharmacology ; Male ; Membrane Potential, Mitochondrial ; drug effects ; Oligospermia ; pathology ; physiopathology ; Rats ; Rats, Sprague-Dawley ; Spermatozoa ; drug effects ; physiology ; ultrastructure
8.Effect of urokinase-type plasminogen activator on the mitochondrial membrane potential of mouse capacitated-spermatozoa in vitro.
Xiao-fang DING ; Xue-jun SHANG ; Hong-gang LI ; Huang-tao GUAN ; Cheng-liang XIONG
National Journal of Andrology 2007;13(5):391-395
OBJECTIVETo study the mechanism of uPA improving sperm capacitation by investigating the effect of uPA on the mitochondrial function of mouse capacitated-sperm in vitro.
METHODSMitochondrial function of mouse capacitated-spermatozoa was evaluated through the assessment of mitochondrial membrane potential using JC-1 performed by flow cytometer and fluorescent microscope respectively. The experiment and the control groups were designed according to the presence or absence of uPA, each divided into 5 subgroups based on the different time of uPA treatment (or BWW in the control groups) at 0, 5, 15, 30 and 60 min respectively.
RESULTS(1) Compared with that at 0 min, the mean fluorescence intensity of JC-1 within the spermatozoal body and the percentage of orange-red colored spermatozoa in the experiment group were increased significantly at 5 and 15 min respectively after uPA incubation (P < 0.05). (2) The mean fluorescence intensity of JC-1 within the spermatozoal body at 15, 30 and 60 min and the percentage of orange-red colored spermatozoa at 5 and 15 min in the group were significantly higher than those in the control group (P < 0.05).
CONCLUSIONuPA could increase the mitochondrial membrane potential of mouse capacitated-spermatozoa in vitro, and maintain it at a high level for a certain period of time. By enhancing sperm mitochondrial function, uPA may provide sufficient energy for capacitated-spermatozoa to increase their motility and change their motor pattern, which might be one of the therapeutic mechanisms of uPA on male infertility.
Animals ; Flow Cytometry ; Fluorescent Dyes ; Male ; Membrane Potential, Mitochondrial ; drug effects ; Mice ; Mice, Inbred Strains ; Sperm Capacitation ; Sperm Motility ; Spermatozoa ; drug effects ; physiology ; Urokinase-Type Plasminogen Activator ; pharmacology
9.The effect of co-immobilized TNF-alpha/IFN-gamma on mitochondrial membrane potential of HeLa cells.
Lianmin ZHONG ; Wenwen WANG ; Huimin TAO ; Yanqing GUAN
Journal of Biomedical Engineering 2009;26(5):972-977
This study inquired into the mechanisms of co-immobilized cytokines and free cytokines-induced apoptosis on HeLa cells. With the use of photochemical fixed method, TNF-alpha/IFN-gamma were co-immobilized on a 24-well polystyrene culture plate. HeLa cells were stained with fluorescent probe JC-1 to detect the changes of mitochondrial membrane potential (deltapsim), and then were examined by flow cytometry. The results showed that co-immobilized cytokines could induce the apoptosis of HeLa cells in a dose-independent manner. When treated with low-dose of co-immobilized cytokines (20ng/ml), the mitochondrial membrane potential (deltapsim) of HeLa cells continually decreased in 6 days. These indicate that low dose co-immobilized cytokines have a long-term of apoptosis-inducing effect on HeLa cells. We assume that there is close relationship between the mitochondrial membrane potential decrease and the apoptosis of HeLa cells.
Apoptosis
;
drug effects
;
Dose-Response Relationship, Drug
;
HeLa Cells
;
Humans
;
Immobilized Proteins
;
pharmacology
;
Interferon-gamma
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membranes
;
drug effects
;
physiology
;
Tumor Necrosis Factor-alpha
;
pharmacology
10.A Novel Synthetic Compound 3-Amino-3-(4-Fluoro-Phenyl)-1H-Quinoline-2,4-Dione (KR22332) Exerts a Radioprotective Effect via the Inhibition of Mitochondrial Dysfunction and Generation of Reactive Oxygen Species.
Seung Jae BAEK ; Jae Won CHANG ; Keun Hyung PARK ; Garp Yeol YANG ; Hye Sook HWANG ; Yoon Woo KOH ; Young Sik JUNG ; Chul Ho KIM
Yonsei Medical Journal 2014;55(4):886-894
PURPOSE: Acute side effects of radiation such as oral mucositis are observed in most patients. Although several potential radioprotective agents have been proposed, no effective agent has yet been identified. In this study, we investigated the effectiveness of synthetic compound 3-amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR22332) as a radioprotective agent. MATERIALS AND METHODS: Cell viability, apoptosis, the generation of reactive oxygen species (ROS), mitochondrial membrane potential changes, and changes in apoptosis-related signaling were examined in human keratinocyte (HaCaT). RESULTS: KR22332 inhibited irradiation-induced apoptosis and intracellular ROS generation, and it markedly attenuated the changes in mitochondrial membrane potential in primary human keratinocytes. Moreover, KR22332 significantly reduced the protein expression levels of ataxia telangiectasia mutated protein, p53, and tumor necrosis factor (TNF)-alpha compared to significant increases observed after radiation treatment. CONCLUSION: KR22332 significantly inhibited radiation-induced apoptosis in human keratinocytes in vitro, indicating that it might be a safe and effective treatment for the prevention of radiation-induced mucositis.
Apoptosis/drug effects/physiology
;
Cell Line, Tumor
;
Cell Survival/drug effects/physiology
;
Humans
;
Keratinocytes/metabolism
;
Membrane Potential, Mitochondrial/drug effects/physiology
;
Radiation-Protective Agents/chemistry/*pharmacology
;
Reactive Oxygen Species/metabolism