1.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Mice
;
Animals
;
Receptors, Tumor Necrosis Factor/physiology*
;
Receptors, OX40
;
Membrane Glycoproteins
;
Ligands
;
Antibodies, Monoclonal/pharmacology*
;
Antineoplastic Agents/pharmacology*
2.An evaluation of genotoxicity and cytotoxicity of melamine in combination with cyanuric acid at three mass ratios.
Xin LIU ; Da Wei HUANG ; Ke Jia WU ; Yong Ning WU ; Xi Wu JIA ; Zhi Yong GONG ;
Biomedical and Environmental Sciences 2014;27(8):641-645
Melamine in combination with cyanuric acid has been considered to be more toxic than either melamine or cyanuric acid alone. The objective of this study was designed to evaluate the combined genotoxicity and cytotoxicity of melamine (M) and cyanuric acid (C) at three mass ratios (1:1, 1:2, 2:1). MC (1:1), MC (1:2), and MC (2:1) were evaluated for their potential genotoxic risk, at gene level by Ames test, and at chromosomal level by micronucleus test. In order to evaluate cytotoxicity in HEK-293 cells, the MTT assay was included. Western blot was also employed to investigate the renal injury molecule-1 (Kim-1) expression in HEK-293 cells exposed to MC. Neither genotoxicity at gene level nor at chromosomal level was observed for MC (1:1), MC (1:2), and MC (2:1). Based on MTT assay, three ratios of MC at 82.5 and 165 µg/mL slightly inhibited viability of HEK-293 cells (P<0.05). MC (1:1) at 41.25 and 82.50 µg/mL could elevate the Kim-1 expression in HEK-293 cells.
Cell Survival
;
drug effects
;
HEK293 Cells
;
Hepatitis A Virus Cellular Receptor 1
;
Humans
;
Membrane Glycoproteins
;
metabolism
;
Receptors, Virus
;
metabolism
;
Triazines
;
pharmacology
3.Lysosomal membrane protein Sidt2 knockout induces apoptosis of human hepatocytes in vitro independent of the autophagy-lysosomal pathway.
Jiating XU ; Mengya GENG ; Haijun LIU ; Wenjun PEI ; Jing GU ; Mengxiang QI ; Yao ZHANG ; Kun LÜ ; Yingying SONG ; Miaomiao LIU ; Xin HU ; Cui YU ; Chunling HE ; Lizhuo WANG ; Jialin GAO
Journal of Southern Medical University 2023;43(4):637-643
OBJECTIVE:
To explore the regulatory mechanism of human hepatocyte apoptosis induced by lysosomal membrane protein Sidt2 knockout.
METHODS:
The Sidt2 knockout (Sidt2-/-) cell model was constructed in human hepatocyte HL7702 cells using Crispr-Cas9 technology.The protein levels of Sidt2 and key autophagy proteins LC3-II/I and P62 in the cell model were detected using Western blotting, and the formation of autophagosomes was observed with MDC staining.EdU incorporation assay and flow cytometry were performed to observe the effect of Sidt2 knockout on cell proliferation and apoptosis.The effect of chloroquine at the saturating concentration on autophagic flux, proliferation and apoptosis of Sidt2 knockout cells were observed.
RESULTS:
Sidt2-/- HL7702 cells were successfully constructed.Sidt2 knockout significantly inhibited the proliferation and increased apoptosis of the cells, causing also increased protein expressions of LC3-II/I and P62(P < 0.05) and increased number of autophagosomes.Autophagy of the cells reached a saturated state following treatment with 50 μmol/L chloroquine, and at this concentration, chloroquine significantly increased the expressions of LC3B and P62 in Sidt2-/- HL7702 cells.
CONCLUSION
Sidt2 gene knockout causes dysregulation of the autophagy pathway and induces apoptosis of HL7702 cells, and the latter effect is not mediated by inhibiting the autophagy-lysosomal pathway.
Humans
;
Lysosome-Associated Membrane Glycoproteins/metabolism*
;
Autophagy
;
Apoptosis
;
Hepatocytes
;
Lysosomes/metabolism*
;
Chloroquine/pharmacology*
;
Nucleotide Transport Proteins/metabolism*
4.Cloning, expression and biological activity identification of a cDNA encoding the extracellular region of human b7-2.
Zhi-Hong YUAN ; Yong-Zhi XI ; Fan-Hua KONG ; Hui-Li ZHANG ; Liu NAN ; Fei LIANG
Journal of Experimental Hematology 2002;10(6):508-511
As one important member of B7/CD28/CTLA-4 costimulatory signal pathway, B7-2 molecule plays a critical role in regulating T-cell response. In order to further explore its effects on regulation of T cell activation, proliferation and associated signal pathways, the cDNA encoding extracellular region of human B7-2 was amplified via PCR and subcloned into some prokaryotic expression vectors to express target protein in host strains. The expressed protein was identified with Western blot and MTT. Results showed that after screening, the expression level of the protein of interest attained the yield of over 20% total bacterial protein by using pGEX-4T-2 vector and E. coli BL21 (DE3)-CodonPlus-RIL host cells. The recombinant protein could specially react with B7-2 McAb and could stimulate T-cell proliferation combined with anti-CD3 antibody. In conclusion, the recombinant protein was bioactive, therefore the study will make it possible for the research of relationship between B7-2 structure and its function.
Antigens, CD
;
biosynthesis
;
genetics
;
pharmacology
;
B7-2 Antigen
;
Blotting, Western
;
Cloning, Molecular
;
DNA, Complementary
;
analysis
;
Humans
;
Membrane Glycoproteins
;
biosynthesis
;
genetics
;
pharmacology
;
Recombinant Proteins
;
biosynthesis
;
isolation & purification
;
pharmacology
5.Nidogen Plays a Role in the Regenerative Axon Growth of Adult Sensory Neurons Through Schwann Cells.
Hyun Kyoung LEE ; In Ae SEO ; Duk Joon SUH ; Hwan Tae PARK
Journal of Korean Medical Science 2009;24(4):654-659
We previously reported that nidogen is an extracellular matrix protein regulating Schwann cell proliferation and migration. Since Schwann cells play a critical role in peripheral nerve regeneration, nidogen may play a role in it via regulation of Schwann cells. Here, we demonstrate direct evidence that nidogen induces elongation of regenerative axon growth of adult sensory neurons, and that the effect is Schwann cell dependent. Continuous infusion of recombinant ectodomain of tumor endothelial marker 7, which specifically blocks nidogen function in Schwann cells, suppressed regenerative neurite growth in a sciatic nerve axotomy model. Taken together, it is likely that nidogen is required for proper regeneration of peripheral nerves after injury.
Animals
;
Axotomy
;
Cell Movement
;
Cell Proliferation
;
Male
;
Membrane Glycoproteins/*physiology
;
Membrane Proteins/pharmacology
;
*Nerve Regeneration
;
Nerve Tissue Proteins/pharmacology
;
Neurites/drug effects/*physiology/ultrastructure
;
Rats
;
Rats, Sprague-Dawley
;
Recombinant Proteins/pharmacology
;
Schwann Cells/cytology/*physiology
;
Sensory Receptor Cells/*physiology
6.Recombinant human B7.2 IgV-like domain expressed in bacteria maintains its co-stimulatory activity in vitro.
Xiaocai YAN ; Jun MA ; Jin ZHENG ; Baochang LAI ; Yiping GENG ; Yili WANG ; Lüsheng SI
Chinese Medical Journal 2002;115(7):1053-1057
OBJECTIVETo investigate which of the two immunoglobulin (Ig)-like domains, the immunoglobulin variable region homologous domain IgV (hB7.2 IgV) and the immunoglobulin constant region homologous domain IgC (hB7.2 IgC) on the human B7.2 molecule contains receptor binding sites, and to evaluate whether the B7.2 protein expressed in bacteria has biological activity in vitro.
METHODSThree fragments of hB7.2 IgV,hB7.2 IgC and the complete extracellular region of human B7.2 containing both the IgV and IgC domains,hB7.2 Ig (V+C), were amplified by PCR and subcloned into pGEM-Teasy. Three recombinants,pGEX-4T-3-hB7.2 IgV,pGEX-4T-3-hB7.2 IgC and pGEX-4T-3-hB7.2 Ig (V+C), were generated by cloning the fragments into a prokaryote expression plasmid (pGEX-4T-3) and transformed into the host strain E. coli DH5alpha. The relevant target fusion proteins consisting of GST and hB7.2 IgV,hB7.2 IgC and hB7.2 Ig (V+C), were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7.2 fusion proteins by [(3)H]-TdR incorporation.
RESULTSThree recombinant fusion proteins of human B7.2, GST-hB7.2 IgV, GST-hB7.2 IgC and GST-hB7.2 Ig (V+C) were produced and detected in inclusion body form from engineered bacteria. With the first signal present,T lymphocytes proliferated when co-stimulated by bacterially-produced either GST-hB7.2 Ig (V+C) or GST-hB7.2 IgV fusion proteins, but not by GST-hB7.2 IgC.
CONCLUSIONSFunctional human B7.2 fusion protein can be produced in bacteria. The IgV-like domain of human B7.2 is sufficient for B7.2 to interact with its counter-receptors and co-stimulate T lymphocytes.
Antigens, CD ; pharmacology ; B7-2 Antigen ; Escherichia coli ; genetics ; Humans ; Immunoglobulin Constant Regions ; pharmacology ; Immunoglobulin Variable Region ; pharmacology ; Lymphocyte Activation ; Membrane Glycoproteins ; pharmacology ; Plasmids ; Recombinant Fusion Proteins ; pharmacology ; T-Lymphocytes ; immunology
7.Triptolide sensitizes lung cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by inhibition of NF-kappa B activation.
Kye Young LEE ; Jae Seuk PARK ; Young Koo JEE ; Glenn D ROSEN
Experimental & Molecular Medicine 2002;34(6):462-468
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/ DR5). TRAIL known to activate NF-kappa B in number of tumor cells including A549 (wt p53) and NCI- H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappa B activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappa B activation. Pretreatment with MG132 which is a well-known NF-kappa B inhibitor by blocking degradation of Ikappa B alpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappa B activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappa B activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.
Antineoplastic Agents/pharmacology
;
Apoptosis/*drug effects
;
Cell Line, Tumor
;
DNA/metabolism
;
Diterpenes/*pharmacology
;
Human
;
Lung Neoplasms/*metabolism/*pathology
;
Membrane Glycoproteins/*pharmacology
;
NF-kappa B/*antagonists & inhibitors/metabolism
;
Phenanthrenes/*pharmacology
;
Tumor Necrosis Factor/*pharmacology
8.Activation of caspase-8 in 3-deazaadenosine-induced apoptosis of U-937 cells occurs downstream of caspase-3 and caspase-9 without Fas receptor-ligand interaction.
Yeo Jin CHAE ; Ho Shik KIM ; Hyang Shuk RHIM ; Bo Eun KIM ; Seong Whan JEONG ; In Kyung KIM
Experimental & Molecular Medicine 2001;33(4):284-292
3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.
Amino Acid Chloromethyl Ketones/pharmacology
;
Apoptosis/*drug effects
;
Bongkrekic Acid/pharmacology
;
Caspases/*metabolism
;
Cell Line
;
Cyclosporine/pharmacology
;
Cytochrome c/drug effects/metabolism
;
Enzyme Activation
;
Human
;
Leukocytes, Mononuclear/cytology
;
Ligands
;
Membrane Glycoproteins/metabolism
;
Tubercidin/*pharmacology
;
U937 Cells
9.Activation of caspase-8 in 3-deazaadenosine-induced apoptosis of U-937 cells occurs downstream of caspase-3 and caspase-9 without Fas receptor-ligand interaction.
Yeo Jin CHAE ; Ho Shik KIM ; Hyang Shuk RHIM ; Bo Eun KIM ; Seong Whan JEONG ; In Kyung KIM
Experimental & Molecular Medicine 2001;33(4):284-292
3-Deazaadenosine (DZA), a cellular methylation blocker was reported to induce the caspase-3-like activities-dependent apoptosis in U-937 cells. In this study, we analyzed the activation pathway of the caspase cascade involved in the DZA-induced apoptosis using specific inhibitors of caspases. In the U-937 cells treated with DZA, cytochrome c release from mitochondria and subsequent activation of caspase-9, -8 and -3 were observed before the induction of apoptosis. zDEVD-Fmk, a specific inhibitor of caspase-3, and zLEHD-Fmk, a specific inhibitor of caspase-9, prevented the activation of caspase-8 but neither caspase-3 nor caspase-9, indicating that caspase-8 is downstream of both caspase-3 and caspase-9, which are activated by independent pathways. zVAD-Fmk, a universal inhibitor of caspases, kept the caspase-3 from being activated but not caspase-9. Moreover, ZB4, an antagonistic Fas-antibody, exerted no effect on the activation of caspase-8 and induction of apoptosis by DZA. In addition, zVAD-Fmk and mitochondrial permeability transition pore (MPTP) inhibitors such as cyclosporin A (CsA) and bongkrekic acid (BA) did not block the release of cytochrome c from mitochondria. Taken together, these results suggest that in the DZA-induced apoptosis, caspase-8 may serve as an executioner caspase and be activated downstream of both caspase-3 and caspase-9, independently of Fas receptor-ligand interaction. And caspase-3 seems to be activated by other caspses including IETDase-like enzyme and caspse-9 seems to be activated by cytochrome c released from mitochondria without the involvement of caspases and CsA- and BA- inhibitory MPTP.
Amino Acid Chloromethyl Ketones/pharmacology
;
Apoptosis/*drug effects
;
Bongkrekic Acid/pharmacology
;
Caspases/*metabolism
;
Cell Line
;
Cyclosporine/pharmacology
;
Cytochrome c/drug effects/metabolism
;
Enzyme Activation
;
Human
;
Leukocytes, Mononuclear/cytology
;
Ligands
;
Membrane Glycoproteins/metabolism
;
Tubercidin/*pharmacology
;
U937 Cells
10.Cooperative anti-tumor effect of aspirin and TNF-related apoptosis-inducing ligand.
Xiao-an LI ; Dian-chun FANG ; Pei-ren SI ; Ru-gang ZHANG ; Liu-qin YANG
Chinese Journal of Hepatology 2003;11(11):676-679
OBJECTIVETo observe the anti-tumor effect of combination TNF-related apoptosis-inducing ligand (TRAIL) with aspirin on liver cancer cell line, SMMC-7721.
METHODSThe survival fraction of SMMC-7721 cells was measured by MTT assay, apoptosis rate and cell cycle was determined by flow cytometry, and the expression of apoptosis-related gene was identified by western blot.
RESULTSThe survival fraction of SMMC-7721 cells treated with 300 ng/ml TRAIL, 3 mmol/L or 10 mmol/L aspirin alone was 82.76%, 81.34% and 71.29% respectively, and the survival fractions of SMMC-7721 cells treated with TRAIL and 3 mmol/L or 10 mmol/L aspirin were 43.54% and 37.8% respectively. The apoptosis rates of SMMC-7721 cells induced by TRAIL and 3 mmol/L or 10 mmol/L aspirin were higher than that induced by TRAIL or aspirin alone (34.76% and 38.56% vs 21.25%, 1.89% and 6.08%), and G0/G1 arrest was observed under TRAIL and aspirin. The expression of Bcl-2 in SMMC-7721 cells treated by 3 mmol/L or 10 mmol/L aspirin decreased markedly, but no effect on Bax.
CONCLUSIONThe cooperative anti-tumor effect of aspirin and TRAIL may be related to the inhibition of the expression of Bcl-2 by aspirin
Antineoplastic Combined Chemotherapy Protocols ; pharmacology ; Apoptosis ; Apoptosis Regulatory Proteins ; Aspirin ; pharmacology ; Cell Survival ; drug effects ; Humans ; Membrane Glycoproteins ; pharmacology ; Proto-Oncogene Proteins c-bcl-2 ; antagonists & inhibitors ; TNF-Related Apoptosis-Inducing Ligand ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha ; pharmacology