1.Association of VAMP-2 and Syntaxin 1A Genes with Adult Attention Deficit Hyperactivity Disorder.
Aye Nur Inci KENAR ; Ozlem Izci AY ; Hasan HERKEN ; Mehmet Emin ERDAL
Psychiatry Investigation 2014;11(1):76-83
OBJECTIVE: The etiology of attention deficit hyperactivity disorder (ADHD) has not been entirely clarified yet. Structural and metabolic differences at the prefrontal striatal cerebellary system and the interaction of gene and environment are the main factors that thought to play roles in the etiology. Genetic investigations are performed especially about the dopamine pathways and receptors. In this study; it was aimed to investigate the association of the synaptobrevin-2 (VAMP-2) gene Ins/Del polymorphism and syntaxin 1A gene intron 7 polymorphism, which take place in encoding presynaptic protein, with adult ADHD. METHODS: One hundred thirty-nine patients, having ADHD aging between 18 and 60 years and 106 healthy people as controls were included into the study. DNA samples were extracted from whole blood and genetic analysis were performed. RESULTS: A significant difference was determined between ADHD and VAMP-2 Ins/Del polymorphism and syntaxin 1A intron 7 polymorphism according to the control group. These polymorphisms were found not to be associated with subtypes of ADHD. CONCLUSION: It is supposed that synaptic protein genes together with dopaminergic genes might have roles in the etiology of ADHD.
Adult*
;
Aging
;
Attention Deficit Disorder with Hyperactivity*
;
DNA
;
Dopamine
;
Humans
;
Introns
;
Qa-SNARE Proteins*
;
Syntaxin 1*
;
Vesicle-Associated Membrane Protein 2*
2.LRRK2 phosphorylates Snapin and inhibits interaction of Snapin with SNAP-25.
Hye Jin YUN ; Joohyun PARK ; Dong Hwan HO ; Heyjung KIM ; Cy Hyun KIM ; Hakjin OH ; Inhwa GA ; Hyemyung SEO ; Sunghoe CHANG ; Ilhong SON ; Wongi SEOL
Experimental & Molecular Medicine 2013;45(8):e36-
Leucine-rich repeat kinase 2 (LRRK2) is a gene that, upon mutation, causes autosomal-dominant familial Parkinson's disease (PD). Yeast two-hybrid screening revealed that Snapin, a SNAP-25 (synaptosomal-associated protein-25) interacting protein, interacts with LRRK2. An in vitro kinase assay exhibited that Snapin is phosphorylated by LRRK2. A glutathione-S-transferase (GST) pull-down assay showed that LRRK2 may interact with Snapin via its Ras-of-complex (ROC) and N-terminal domains, with no significant difference on interaction of Snapin with LRRK2 wild type (WT) or its pathogenic mutants. Further analysis by mutation study revealed that Threonine 117 of Snapin is one of the sites phosphorylated by LRRK2. Furthermore, a Snapin T117D phosphomimetic mutant decreased its interaction with SNAP-25 in the GST pull-down assay. SNAP-25 is a component of the SNARE (Soluble NSF Attachment protein REceptor) complex and is critical for the exocytosis of synaptic vesicles. Incubation of rat brain lysate with recombinant Snapin T117D, but not WT, protein caused decreased interaction of synaptotagmin with the SNARE complex based on a co-immunoprecipitation assay. We further found that LRRK2-dependent phosphorylation of Snapin in the hippocampal neurons resulted in a decrease in the number of readily releasable vesicles and the extent of exocytotic release. Combined, these data suggest that LRRK2 may regulate neurotransmitter release via control of Snapin function by inhibitory phosphorylation.
Amino Acid Sequence
;
Animals
;
Exocytosis
;
Female
;
HEK293 Cells
;
Humans
;
Mice
;
Molecular Sequence Data
;
Mutant Proteins/metabolism
;
Phosphorylation
;
Phosphothreonine/metabolism
;
Protein Binding
;
Protein Interaction Mapping
;
Protein Structure, Tertiary
;
Protein-Serine-Threonine Kinases/*metabolism
;
Qa-SNARE Proteins/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Synaptosomal-Associated Protein 25/*metabolism
;
Synaptotagmins/metabolism
;
Vesicle-Associated Membrane Protein 2/metabolism
;
Vesicular Transport Proteins/chemistry/*metabolism
3.Significance of Vesicle-Associated Membrane Protein 8 Expression in Predicting Survival in Breast Cancer.
Mengci YUAN ; Jianhua LIAO ; Ji LUO ; Mengyao CUI ; Feng JIN
Journal of Breast Cancer 2018;21(4):399-405
PURPOSE: Vesicle-associated membrane protein 8 (VAMP8) is a soluble N-ethylmaleimide-sensitive factor receptor protein that participates in autophagy by directly regulating autophagosome membrane fusion and has been reported to be involved in tumor progression. Nevertheless, the expression and prognostic value of VAMP8 in breast cancer (BC) remain unknown. This study aimed to evaluate the clinical significance and biological function of VAMP8 in BC. METHODS: A total of 112 BC samples and 30 normal mammary gland samples were collected. The expression of VAMP8 was assessed in both BC tissues and normal mammary gland tissues via a two-step immunohistochemical detection method. RESULTS: The expression of VAMP8 in BC tissues was significantly higher than that in normal breast tissues. Furthermore, increased VAMP8 expression was significantly correlated with tumor size (p=0.007), lymph node metastasis (p=0.024) and recurrence (p=0.001). Patients with high VAMP8 expression had significantly lower cumulative recurrence-free survival and overall survival (p < 0.001 for both) than patients with low VAMP8 expression. In multivariate logistic regression and Cox regression analyses, lymph node metastasis and VAMP8 expression were independent prognostic factors for BC. CONCLUSION: VAMP8 is significantly upregulated in human BC tissues and can thus be a practical and potentially effective surrogate marker for survival in BC patients.
Autophagy
;
Biomarkers
;
Breast Neoplasms*
;
Breast*
;
Humans
;
Logistic Models
;
Lymph Nodes
;
Mammary Glands, Human
;
Membrane Fusion
;
Methods
;
N-Ethylmaleimide-Sensitive Proteins
;
Neoplasm Metastasis
;
Prognosis
;
R-SNARE Proteins*
;
Recurrence
4.Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium.
Wen-Cheng ZHANG ; Yuan-Ming LU ; Huai-Zhang YANG ; Peng-Tao XU ; Hui CHANG ; Zhi-Bin YU
Acta Physiologica Sinica 2013;65(2):143-148
One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.
Animals
;
Atrial Natriuretic Factor
;
metabolism
;
Heart Ventricles
;
metabolism
;
Myocardium
;
metabolism
;
Rats
;
SNARE Proteins
;
metabolism
;
Vesicle-Associated Membrane Protein 1
;
metabolism
;
Vesicle-Associated Membrane Protein 2
;
metabolism
;
Weightlessness Simulation
5.Restoration of Cdk5, TrkB and Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins after Chronic Methylphenidate Treatment in Spontaneous Hypertensive Rats, a Model for Attention-Deficit Hyperactivity Disorder
Yeni KIM ; Songhee JEON ; Ha Jin JEONG ; Seong Mi LEE ; Ike dela PEÑA ; Hee Jin KIM ; Doug Hyun HAN ; Bung Nyun KIM ; Jae Hoon CHEONG
Psychiatry Investigation 2019;16(7):558-564
OBJECTIVE: Synaptic vesicle mobilization and neurite outgrowth regulation molecules were examined in modulation of effects of methylphenidate (MPH) in Spontaneous Hypertensive Rats (SHRs), a model for attention-deficit hyperactivity disorder (ADHD). METHODS: We compared the changes in the protein expression level of Cyclin dependent kinase 5 (Cdk5) and molecular substrates of Cdk5; tropomyosin receptor kinase B (TrkB), syntaxin 1A (STX1A) and synaptosomal-associated protein 25 (SNAP25). Comparisons were made in prefrontal cortex of vehicle (distilled water i.p. for 7 days)-treated SHRs, vehicle-treated Wistar Kyoto Rats (WKYs) and MPH (2 mg/kg i.p. for 7 days) treated SHRs. RESULTS: The Cdk5 level of vehicle-treated SHRs was significantly decreased compared to the Cdk5 level of vehicle-treated WKY rats, but was restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. The ratio of p25/p35 was significantly decreased in MPH-treated SHR compared to vehicle-treated SHR. Moreover, TrkB, STX1A and SNAP25 of vehicle-treated SHRs were significantly decreased compared to vehicle-treated WKY rats, but were restored to the expression level of vehicle-treated WKYs in MPH-treated SHR. CONCLUSION: The results show that Cdk5, TrkB, STX1A, and SNAP25 were involved in the modulation of MPH effects in prefrontal cortex of SHRs and play important role in treatment of ADHD.
Animals
;
Cyclin-Dependent Kinase 5
;
Methylphenidate
;
Neurites
;
Phosphotransferases
;
Prefrontal Cortex
;
Rats
;
Rats, Inbred WKY
;
Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins
;
Synaptic Vesicles
;
Synaptosomal-Associated Protein 25
;
Syntaxin 1
;
Tropomyosin
;
Water
6.Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources.
Suhua CHANG ; Weina ZHANG ; Lei GAO ; Jing WANG
Protein & Cell 2012;3(7):526-534
Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.
Attention Deficit Disorder with Hyperactivity
;
genetics
;
Computer Simulation
;
Databases, Genetic
;
Gene Regulatory Networks
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Humans
;
Models, Genetic
;
Software
;
Synaptosomal-Associated Protein 25
;
genetics
;
Syntaxin 1
;
genetics
7.Synthetic Cannabinoid-Induced Immunosuppression Augments Cerebellar Dysfunction in Tetanus-Toxin Treated Mice.
Jaesuk YUN ; Sun Mi GU ; Tac hyung LEE ; Yun Jeong SONG ; Seonhwa SEONG ; Young Hoon KIM ; Hye Jin CHA ; Kyoung Moon HAN ; Jisoon SHIN ; Hokyung OH ; Kikyung JUNG ; Chiyoung AHN ; Hye Kyung PARK ; Hyung Soo KIM
Biomolecules & Therapeutics 2017;25(3):266-271
Synthetic cannabinoids are one of most abused new psychoactive substances. The recreational use of abused drug has aroused serious concerns about the consequences of these drugs on infection. However, the effects of synthetic cannabinoid on resistance to tetanus toxin are not fully understood yet. In the present study, we aimed to determine if the administration of synthetic cannabinoids increase the susceptibility to tetanus toxin-induced motor behavioral deficit and functional changes in cerebellar neurons in mice. Furthermore, we measured T lymphocytes marker levels, such as CD8 and CD4 which against tetanus toxin. JWH-210 administration decreased expression levels of T cell activators including cluster of differentiation (CD) 3ε, CD3γ, CD74p31, and CD74p41. In addition, we demonstrated that JWH-210 induced motor impairment and decrement of vesicle-associated membrane proteins 2 levels in the cerebellum of mice treated with tetanus toxin. Furthermore, cerebellar glutamatergic neuronal homeostasis was hampered by JWH-210 administration, as evidenced by increased glutamate concentration levels in the cerebellum. These results suggest that JWH-210 may increase the vulnerability to tetanus toxin via the regulation of immune function.
Animals
;
Cannabinoids
;
Cerebellar Diseases*
;
Cerebellum
;
Glutamic Acid
;
Homeostasis
;
Immunosuppression*
;
Mice*
;
Neurons
;
R-SNARE Proteins
;
T-Lymphocytes
;
Tetanus
;
Tetanus Toxin
8.Membrane microparticles and their roles in the regulation of hematopoiesis - review.
Er-Hong MENG ; Chu-Tse WU ; Li-Sheng WANG
Journal of Experimental Hematology 2005;13(4):713-717
Membrane microparticles are shed from the plasma membrane of most eukaryotic cells when these cells were undergone activation or apoptosis, and released into the extracellular environment. Their composition depends on the cellular origin and processes triggering their formation. Several lines of evidence suggest that membrane microparticles might be able to facilitate cell-cell cross-talk and play an important roles in the regulation of survival, proliferation, differentiation, adhesion and chemotaxis of hematopoietic cells. Here, the components, mechanism of formation and the regulatory roles of membrane microparticles in hematopoiesis were reviewed.
Caveolae
;
metabolism
;
physiology
;
Cell Membrane
;
metabolism
;
physiology
;
Hematopoiesis
;
physiology
;
Humans
;
Models, Biological
;
R-SNARE Proteins
;
metabolism
;
physiology
9.Expression and purification of heptad repeat region of the mumps virus F protein and analysis of characteristics.
Yue-Yong LIU ; Ming-Guang FENG ; Jie-Qing ZHU ; Li-Jie JIANG ; Po TIEN
Chinese Journal of Biotechnology 2004;20(3):377-381
Two Heptad repeat motifs (HR1 and HR2) from paramyxoviruses F protein could form thermostable heterodimers containing high alpha-helix while virus infected host cell. Following that the viral membrane and the host cell membrane were juxtaposed, which leads to membrane fusion. Mumps virus (MuV) is a member of the genus Rubulavirus in the family of Paramyxoviridae. MuV could use similar infection mechanism as well as other paramyxoviruses. In this study the HR1 and HR2 regions of MuV F protein were predicted by a computer program and expressed in E. coli with the GST fusion expression system. The GST fusion or GST-removed proteins were purified with Gluthathion Sepharose 4B Column. GST pull-down experiment suggested the interaction of HR1 and HR2 peptides, and analysis of gel filtration showed two peptides could form multimer, which indicates that the HR regions of MuV F protein may play an important role in virus fusion.
Membrane Fusion
;
genetics
;
Mumps virus
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
chemistry
;
genetics
;
isolation & purification
;
Repetitive Sequences, Amino Acid
;
Viral Fusion Proteins
;
biosynthesis
;
genetics
;
isolation & purification
10.High level expression of 5-helix protein in HIV gp41 heptad repeat regions and its virus fusion-inhibiting activity.
Jiuqiang WANG ; Xuwen PAN ; Po TIEN ; Sidang LIU
Chinese Journal of Biotechnology 2009;25(3):435-440
The artificial 5-helix can inhibit the formation of trimer-of-hairpins structure during the course of HIV-directed membrane fusion and then inhibit human immunodeficiency virus (HIV) infecting target cells. But 5-helix was apt to form inclusion body when expressed directly in prokaryotic cell and was difficult to renature, which causes inconvenience to future study. We found a proper expression vector by simulating protein structure. We simulated its proper conformation in two vectors pGEX-6P-1 and pET44b by homology modeling. The contrast of conformations showed that the energy of salvation of its fusion protein with NusA in vector pET44b was higher than its fusion protein with glutathione-S-transferase (GST) in pGEX-6P-1 and its restriction site lay on the surface of its fusion protein in vector pET44b. 5-helix gene was amplified from pGEX-6P-1-5H by PCR, and was ligated to pET44b to construct recombinant vector pET44b-PSP-5Helix after tested correctly by enzymes digestion. The recombinant vector was transformed into Escherichia coli BL21 (DE3) to express 5-helix protein at different temperatures. Aim protein was purified with Ni column and GST column, and was determined by SDS-PAGE. Then the purified 5 -Helix was used to test the inhibitive activity of pseudo HIV virus infecting GHOST-CXCR4. Results show that its fusion protein with NusA can be effectively soluble expressed and easier to be cleaved, and that the purified 5-helix can efficiently inhibit pseudo HIV virus infecting GHOST-CXCR4 and its IC50 value is (22.77 +/- 5.64) nmol/L, which lay the foundation to further discuss the application in HIV-1 infection.
Carrier Proteins
;
biosynthesis
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Vectors
;
genetics
;
HIV Envelope Protein gp41
;
metabolism
;
HIV-1
;
genetics
;
Peptides
;
genetics
;
Repetitive Sequences, Nucleic Acid
;
genetics
;
Viral Fusion Proteins
;
genetics
;
Virus Internalization
;
drug effects