1.Research progress of steroidal saponins in Paris polyphylla var. yunnanensis and their microbial transformation.
Di ZHOU ; Qi-Dong PAN ; Xiu-Xiang YAN ; Lu GAO ; Li-Xin YANG
China Journal of Chinese Materia Medica 2022;47(18):4863-4876
Steroidal saponins, important natural organic compounds in Paris polyphylla var. yunnanensis, have good biological activity. Structural modification of steroidal saponins by microbial transformation could produce a large number of products with novel structures and excellent bioactivity, which can provide functional compounds for the research and development of steroidal drugs. This study summarized the research progress in steroidal saponins and their microbial transformation in P. polyphylla var. yunnanensis. P. polyphylla var. yunnanensis contains 112 steroidal saponins, 8 of which are used as substrates in 35 transformation reactions by 25 microbial species, with the highest transformation rate of 95%. Diosgenin is the most frequently used substrate. Furthermore, the strains, culture medium, reaction conditions, transformation rate, transformation reaction characteristics, and biological activities of the transformed products were summarized. This review may provide reference for the further research on microbial transformation of steroidal saponins in P. polyphylla var. yunnanensis.
Diosgenin/analysis*
;
Liliaceae/chemistry*
;
Melanthiaceae/chemistry*
;
Rhizome/chemistry*
;
Saponins/analysis*
2.Spatial distribution characteristics of metabolities in rhizome of Paris polyphylla var. yunnanensis: based on MALDI-MSI.
Guan-Hua ZHANG ; Xiao-Li LIU ; Chun-Xia MA ; Wen-Han LI ; Xiao WANG
China Journal of Chinese Materia Medica 2022;47(5):1222-1229
In this study, a method was established for in-situ visualization of metabolite distribution in the rhizome of Paris polyphylla var. yunnanensis. To be specific, through matrix-assisted laser desorption/ionization-mass spectrometry imaging(MALDI-MSI), the spatial locations of steroidal saponins, amino acids, organic acids, phytosterols, phytoecdysones, nucleosides, and esters in rhizome of the medicinal plant were directly analyzed, and six unknown compounds with differential distribution in rhizome tissues were identified. The specific procedure is as follows: preparation of rhizome tissue section, matrix screening and optimization, and MALDI-MSI analysis. The results showed that the steroidal saponins were mainly distributed in the central, amino acids in epidermis and cortex, low-molecular-weight organic acids in central epidermis, phytosterols in the epidermis and lateral cortex, the phytoecdysones in epidermis and cortex, nucleosides(uneven distribution) in epidermis and cortex, growth hormones around the epidermis and cortex, particularly outside the cortex, and esters in cortex with unobvious difference among different tissues. In this study, the spatial distribution of meta-bolites in the rhizome of P. polyphylla var. yunnanensis was characterized for the first time. The result can serve as a reference for identifying and extracting endogenous metabolites of P. polyphylla var. yunnanensis, exploring the synthesis and metabolism mechanisms of the metabolites, and evaluating the quality of medicinal materials.
Liliaceae/chemistry*
;
Melanthiaceae
;
Rhizome/chemistry*
;
Saponins/analysis*
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.New steroidal saponins from aerial parts of Paris polyphylla var. chinensis.
Zi-Lu ZHENG ; Xiao-Min TAN ; Liang-Jun GUAN ; Ru WANG ; Liang-Mian CHEN ; Zhi-Min WANG ; Hui-Min GAO
China Journal of Chinese Materia Medica 2023;48(17):4589-4597
The shortage of Paridis Rhizoma promotes comprehensive utilization and development research of waste aerial parts of the original plant. The chemical compositions of the aerial parts of Paris polyphylla var. chinensis were clarified based on the ultrahigh performance liquid chromatography tandem quadrupoles time of flight mass spectrometry(UPLC-QTOF-MS/MS) in the previous investigation, and a series of flavonoids and steroidal saponins were isolated. The present study continued the isolation and structure identification of the new potential compounds discovered based on UPLC-QTOF-MS/MS. By using silica gel, ODS, flash rapid preparation, and other column chromatography techniques, combined with prepared high performance liquid chromatography, five compounds were isolated from the 75% ethanol extract of the aerial parts of P. polyphylla var. chinensis, and their structures were identified by spectral data combined with chemical transformations, respectively, as(23S,25R)-23,27-dihydroxy-diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(1),(25R)-26-O-β-D-glucopyranosyl-furost-5-en-3β,22α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(2),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside(3),(25R)-27-O-β-D-glucopyranosyl-5-en-3β,27-dihydroxyspirost-3-O-α-L-rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-β-D-glucopyranoside(4), and aculeatiside A(5). Among them, compounds 1-4 were new ones, and compound 5 was isolated from P. polyphylla var. chinensis for the first time.
Tandem Mass Spectrometry
;
Saponins/analysis*
;
Liliaceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Rhizome/chemistry*
;
Melanthiaceae
;
Molecular Structure
4.Gene clone and functional identification of sterol glycosyltransferases from Paris polyphylla var. yunnanensis.
Min HE ; Si-Yuan GUO ; Yan YIN ; Chi ZHANG ; Xia-Nan ZHANG
China Journal of Chinese Materia Medica 2023;48(14):3774-3785
In this study, the authors cloned a glycosyltransferase gene PpUGT2 from Paris polyphylla var. yunnanensis with the ORF length of 1 773 bp and encoding 590 amino acids. The phylogenetic tree revealed that PpUGT2 belonged to the UGT80A subfamily and was named as UGT80A49 by the UDP-glycosyltransferase(UGT) Nomenclature Committee. The expression vector pET28a-PpUGT2 was constructed, and enzyme catalytic reaction in vitro was conducted via inducing protein expression and extraction. With UDP-glucose as sugar donor and diosgenin and pennogenin as substrates, the protein was found with the ability to catalyze the C-3 hydroxyl β-glycosylation of diosgenin and pennogenin. To further explore its catalytic characteristic, 15 substrates including steroids and triterpenes were selected and PpUGT2 showed its activity towards the C-17 position of sterol testosterone with UDP-glucose as sugar donor. Homology modelling and molecule docking of PpUGT2 with substrates predicted the key residues interacting with ligands. The re-levant residues of PpUGT2-ligand binding model were scanned to calculate the corresponding mutants, and the optimized mutants were obtained according to the changes in binding affinity of the ligand with protein and the surrounding residues within 5.0 Å of ligands, which had reference value for design of the mutants. This study laid a foundation for further exploring the biosynthetic pathway of polyphyllin as well as the structure of sterol glycosyltransferases.
Ligands
;
Glycosyltransferases/genetics*
;
Sterols
;
Phylogeny
;
Ascomycota
;
Liliaceae/chemistry*
;
Melanthiaceae
;
Diosgenin
;
Sugars
;
Glucose
;
Uridine Diphosphate
5.Development strategy of Paris based on combination of domestic patent and current resource application and development.
Fei-Ya ZHAO ; Ai-En TAO ; Cong-Long XIA
China Journal of Chinese Materia Medica 2018;43(2):404-409
Paris is a commonly used traditional Chinese medicine (TCM), and has antitumor, antibacterial, sedative, analgesic and hemostatic effects. It has been used as an ingredient of 81 Chinese patent medicines, with a wide application and large market demand. Based on the data retrieved from state Intellectual Property Office patent database, a comprehensive analysis was made on Paris patents, so as to explore the current features of Paris patents in the aspects of domestic patent output, development trend, technology field distribution, time dimension, technology growth rate and patent applicant, and reveal the development trend of China's Paris industry. In addition, based on the current Paris resource application and development, a sustainable, multi-channel and multi-level industrial development approach was built. According to the results, studies of Paris in China are at the rapid development period, with a good development trend. However, because wild Paris resources tend to be exhausted, the studies for artificial cultivation technology should be strengthened to promote the industrial development.
Drug Development
;
trends
;
Drugs, Chinese Herbal
;
pharmacology
;
Medicine, Chinese Traditional
;
Melanthiaceae
;
chemistry
;
Patents as Topic
;
Plants, Medicinal
;
chemistry
6.Correlation analysis of quality,origin and phenotypic characters of Paris polyphylla var. yunnanensis.
Qian WANG ; Yuan DING ; Min YANG ; Dong-Qin GUO ; Yu HUANG ; Chong-Tao ZHANG ; Yi-Fei PANG ; Nong ZHOU
China Journal of Chinese Materia Medica 2019;44(15):3203-3212
In order to provide guidance for the protection and utilization of resources,quality control and breeding of improved varieties,we compared the main phenotypic characters and quality of wild and transplanted Paris polyphylla var. yunnanensis collected from different producing areas. Seven phenotypic characters of 33 samples of P. polyphylla var. yunnanensis collected from Yunnan,Guizhou and Sichuan were determined by conventional methods,and the principal component analysis and cluster analysis were used to analyze the diversity of the samples. The parissaponin( polyphyllin Ⅰ,Ⅱ,Ⅵ,Ⅶ) content of the samples were detected by HPLC,and analyzed by cluster analysis. Correlation analysis of the phenotypic characters and the parissaponin content was performed. There were significant differences in seven phenotypic characters between wild and transplanted samples of P. polyphylla var. yunnanensis from different habitats,with high phenotypic diversity and abundant genetic variation. The results of principal component analysis showed that leaf shape index was the main factor of morphological variation of P. polyphylla var. yunnanensis. Cluster analysis showed that the phenotypic characters of wild and transplanted P. polyphylla var. yunnanensis could not be completely separated. The content of saponins in wild and transplanted samples from different habitats was quite different. Saponins content of 93. 94% samples met the criterion of Chinese Pharmacopoeia 2015 edition,and the overall quality was relatively steady. The results of independent sample t-test showed that there was no significant difference of all the active ingredient between wild and transplanted samples,and it couldn't be used to distinguish between wild and transplanted samples. It is the same as the results of cluster analysis. The results of correlation analysis showed that the phenotypic traits of P. polyphylla var. yunnanensis were correlated with its medicine quality,and the total content of saponins was positively correlated with leaf length and leaf shape index( r = 0. 389,0. 441; P<0. 05). Yunnan,Guizhou and Sichuan are suitable for the growth of P. polyphylla var. yunnanensis. And the transplaned P. polyphylla var. yunnanensis can be used as the same as the wild ones completely. The results provide reference for the protection and selective breeding of P. polyphylla var. yunnanensis.
China
;
Chromatography, High Pressure Liquid
;
Ecosystem
;
Melanthiaceae
;
chemistry
;
Phytochemicals
;
analysis
;
Plant Breeding
;
Plant Leaves
;
Plants, Medicinal
;
chemistry
;
Saponins
;
analysis