1.Role of arginase-1 expression in distinguishing hepatocellular carcinoma from non-hepatocellular tumors.
Wei SANG ; Abulajiang GULINAR ; Cheng-hui WANG ; Wei-qi SHENG ; Ymijiang MAIWEILIDAN ; Wei ZHANG
Chinese Journal of Pathology 2013;42(8):538-542
OBJECTIVETo study the role of arginase-1 (Arg-1) expression in differential diagnosis of hepatocellular carcinoma (HCC), Arg-1 staining pattern in clear cell neoplasm (HCC and non-HCC) and Arg-1 expression in non-hepatocellular tumors.
METHODSSeventy-eight cases of HCC (including 8 cases of clear cell type and 70 cases of non- clear cell type) and 246 cases of non-hepatocellular neoplasms (including 29 cases of metastatic tumors such as breast cancer, nasopharyngeal carcinoma and neuroendocrine carcinoma, 77 cases of tumors with clear cell changes such as malignant melanoma, clear cell renal cell carcinoma and alveolar soft part sarcoma, and 140 cases of other types of tumors such as ovarian endometrioid adenocarcinoma, pituitary tumor and thyroid papillary carcinoma) were studied.Immunohistochemical study for Arg-1 was performed on the paraffin-embedded tumor tissue.
RESULTSIn HCC, Arg-1 demonstrated both cytoplasmic and nuclear staining, with an overall sensitivity of 96.2% (75/78).In well, moderately and poorly differentiated HCC, the sensitivity was 15/15, 100% (41/41) and 86.4% (19/22), respectively. That was in contrast to negative staining for Arg-1 in all the 29 cases of metastatic tumors studied. The sensitivity, specificity, positive predictive value and negative predictive value of Arg-1 in distinguishing HCC from metastatic tumors was 96.2%, 100%, 100% and 90.6%, respectively. Cytoplasmic and membranous staining was observed in clear cell type of HCC. The overall sensitivity of Arg-1 expression in the 77 cases of tumors with clear cell changes was 14.3% (11/77), including 8/15 for malignant melanoma, 2/4 for ovarian clear cell carcinoma and 1/1 gall bladder adenocarcinoma with clear cell component.In malignant melanoma and ovarian clear cell carcinoma, only cytoplasmic staining was demonstrated. There was no expression of Arg-1 in the 140 cases of other tumor types studied.
CONCLUSIONSArg-1 is a sensitive and specific marker for HCC.It is a potentially useful immunohistochemical marker in distinguishing HCC from metastatic tumors. Though also expressed in malignant melanoma and ovarian clear cell carcinoma, Arg-1 shows a different staining pattern as compared with that in HCC.
Adenocarcinoma ; enzymology ; Adult ; Aged ; Arginase ; metabolism ; Carcinoma, Hepatocellular ; enzymology ; pathology ; secondary ; Cell Differentiation ; Diagnosis, Differential ; Female ; Gallbladder Neoplasms ; enzymology ; Humans ; Liver Neoplasms ; enzymology ; pathology ; secondary ; Male ; Melanoma ; enzymology ; Middle Aged ; Ovarian Neoplasms ; enzymology ; Stomach Neoplasms ; enzymology ; pathology
2.Multi-facet expressions of adenylate cyclase isoforms in B16-F10 melanoma cells differentiated by forskolin treatment.
Du Hyong CHO ; Chang Dae BAE ; Yong Sung JUHNN
Experimental & Molecular Medicine 2000;32(4):235-242
The terminal differentiation of malignant melanoma cells is known to be induced by activating cAMP signaling pathway with alpha-MSH or cAMP analogues. However, sustained activation of cAMP signaling system that induces the differentiation of melanoma cells, also induces the desensitization of the pathway at the receptor level. Nevertheless, the adaptation of adenylate cyclase (AC) expression by sustained activation of cAMP signaling system has not been clearly understood. This study was performed to examine whether the sustained activation of cAMP system induce changes in the expression AC isoforms as an adaptation mechanism. Treatment of B16/F10 murine melanoma cells with 100 mM forskolin for 6 days resulted in differentiation, melanin accumulation and increased expression of tyrosine hydroxylase mRNA. In the forskolin-treated melanoma cells, change in expression of various AC isoform at the transcription level was detected by reverse-transcription polymerase chain reaction (RT-PCR). Expression of AC isoform mRNA: ACI, III, VI, VII, and IX increased to the level of 196-392% of the control whereas the level of ACII was decreased by 30%. The cAMP concentration was increased both in basal and alpha-MSH stimulated cells, but the AC activity was decreased in the forskolin treated cells. Thus, these results suggest that sustained activation of cAMP system induces differential expression of AC isoforms, which results in increase of cAMP accumulation.
Adenylate Cyclase/*genetics
;
Animal
;
Cell Differentiation
;
Cyclic AMP/*metabolism
;
Forskolin/*pharmacology
;
Isoenzymes/genetics
;
Melanoma, Experimental/*enzymology/*pathology
;
Mice
;
Signal Transduction
3.Millimeter wave exposure induces apoptosis in human melanoma A375 cells .
Ruiting ZHAO ; Yonghong LIU ; Sida LIU ; Tong LUO ; Guangyuan ZHONG ; Anqi LIU ; Qiang ZENG ; Xuegang XIN
Journal of Southern Medical University 2019;39(1):76-81
OBJECTIVE:
To investigate the effects of millimeter wave (MMW) exposure on apoptosis of human melanoma A375 cells and explore the mechanisms.
METHODS:
Through electromagnetic field calculation we simulated MMW exposure in cells and calculated the specific absorption rate (SAR). The optimal irradiation parameters were determined according to the uniformity and intensity of the SAR. A375 cells were then exposed to MMV for 15, 30, 60, or 90 min, with or without pretreatment with the caspase-3 inhibitor AC-DEVD-fmk (10 μmol/L) for 1 h at 90 min before the exposure. CCK-8 assay was used to assess the changes in the viability and Annexin-V/ PI staining was used to detect the apoptosis of the cells following the exposures; Western blotting was used to detect the expression of caspase-3 in the cells.
RESULTS:
The results of electromagnetic field calculation showed that for optimal MMV exposure, the incident field needed to be perpendicular to the bottom of the plastic Petri dish with the antenna placed below the dish. CCk-8 assay showed that MMW exposure significantly inhibited the cell viability in a time-dependent manner ( < 0.05); exposures for 15, 30, 60, and 90 min all resulted in significantly increased apoptosis of the cells ( < 0.05). The cells with MMW exposure showed significantly increased expression of caspase-3. The inhibitory effect of MMW on the cell viability was antagonized significantly by pretreatment of the cells with AC-DEVD-fmk ( < 0.05), which increased the cell viability rate from (36.7±0.09)% to (59.8±0.06)% ( < 0.05).
CONCLUSIONS
35.2 GHz millimeter wave irradiation induces apoptosis in A375 cells by activating the caspase-3 protein.
Apoptosis
;
Caspase 3
;
metabolism
;
Caspase Inhibitors
;
pharmacology
;
Cell Line, Tumor
;
Cell Survival
;
Electromagnetic Fields
;
Enzyme Activation
;
Humans
;
Magnetic Field Therapy
;
Melanoma
;
enzymology
;
pathology
;
therapy
;
Time Factors
4.Sphingosine 1-Phosphate Triggers Apoptotic Signal for B16 Melanoma Cells via ERK and Caspase Activation.
Jeong Hyun SHIN ; Gwang Seong CHOI ; Won Hyung KANG ; Ki Bum MYUNG
Journal of Korean Medical Science 2007;22(2):298-304
The bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), recently was reported to induce apoptosis of some cancer cells and neurons, although it generally known to exert mitogenic and antiapoptotic effects. In this study, we investigated the effects of S1P on the cell growth, melanogenesis, and apoptosis of cultured B16 mouse melanoma cells. In results, S1P was found to induce apoptosis in B16 melanoma cells in a dose- and time-dependent manner, but exerted minimal effects on melanogenesis. Although receptors of sphingosine 1-phosphate (endothelial differentiation gene 1 [Edg]/S1P1, Edg5/S1P2, Edg3/S1P3) were expressed in B16 melanoma cells, they were shown not to be associated with S1P-induced apoptosis. In addition, pertussis toxin did not block the apoptotic effects of S1P on B16 melanoma cells. S1P induced caspase-3 activation and the extracellular signal-regulated kinase (ERK) activation. Interestingly, the ERK pathway inhibitor, UO126, reversed the apoptotic effects of S1P on B16 melanoma cells. These results suggest that S1P induced apoptosis of B16 melanoma cells via an Edg receptor-independent, pertussis toxin-insensitive pathway, and appears to be associated with the ERK and caspase-3 activation.
Sphingosine/administration & dosage/*analogs & derivatives
;
Signal Transduction/drug effects
;
Mice
;
Melanoma/*enzymology/*pathology
;
Lysophospholipids/*administration & dosage
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Enzyme Activation/drug effects
;
Cell Line
;
Caspase 3/*metabolism
;
Apoptosis/*drug effects
;
Animals
5.Effects of endostatin and doxycycline on microcirculation patterns in melanoma and their relevant molecular mechanisms.
Bao-cun SUN ; Shi-wu ZHANG ; Li-sha QI ; Dann-fang ZHANG ; Hua GUO ; Xiu-lan ZHAO
Chinese Journal of Oncology 2007;29(7):500-504
OBJECTIVETo investigate the effects of endostatin and doxycycline on microcirculation patterns in melanoma and their molecular mechanisms.
METHODSTo establish mouse B16 melanoma model by subcutaneous injection of B16 melanoma cell suspension. The mice were divided into 3 experimental groups and 1 control group. To treat the mice in the 3 experimental groups with endostatin, doxycycline, endostatin and doxycycline, respectively, and the control group without any treatment. The tumor volume was measured and recorded to make comparison of their growth rate. To assess the expression of MMP-2, MMP-9 and TIMP-2 by immunohistochemical staining. The three microcirculation patterns of endothelium-dependent vessels, mosaic vessels and vasculogenic mimicry were counted. The activity of MMP-2, MMP-9 between different groups was examined by gelatin zymography.
RESULTSTumor growth in the three experimental groups was statistically significantly slower than that in the control group. The expression of MMP-2, MMP-9 and TIMP-2 in each treated group was significantly different with that in the control group. The amount of three microcirculation patterns in three experimental groups was less than that of the control group, and the amount of MV and VM in each experimental group was significantly less than that in the control group. By gelatin zymography, the enzyme activity of MMP-9, actived-MMP-2 and MMP-2/proMMP-2 in ES, DOX and ES + DOX group was lower than that in the control group, but the enzyme activity of pro-MMP-2 among the four groups was not significantly different.
CONCLUSIONThe combined use of doxycycline and endostatin in melanoma can inhibit the expression of MMPs, influencing the formation of different microcirculation patterns in melanoma.
Animals ; Antineoplastic Agents ; pharmacology ; Cell Line, Tumor ; Doxycycline ; pharmacology ; Drug Combinations ; Drug Synergism ; Endostatins ; pharmacology ; Female ; Male ; Matrix Metalloproteinase 2 ; metabolism ; Matrix Metalloproteinase 9 ; metabolism ; Melanoma, Experimental ; blood supply ; enzymology ; pathology ; Mice ; Mice, Inbred C57BL ; Microcirculation ; drug effects ; Microvessels ; pathology ; Neoplasm Transplantation ; Tissue Inhibitor of Metalloproteinase-2 ; metabolism ; Tumor Burden ; drug effects
6.Construction of stable focal adhesion kinase knockdown cell line and preliminary study of its properties.
Acta Pharmaceutica Sinica 2012;47(9):1128-1133
Malignant melanoma still remains to be a serious health threat. Overexpression of focal adhesion kinase (FAK) in melanoma has suggested that FAK could be a promising target for therapeutic intervention. To further investigate the function of FAK in melanoma, FAK expression was down-regulated by stable transfection of plasmid harboring FAK small interfering RNA (siRNA) into melanoma cell line. Two stable cell lines, F10-siFAK and F10-control, have been constructed and screened. Compared with the F10-control, both the mRNA and protein levels of FAK decreased significantly, and the cell cycle of F10-siFAK was arrested at G1 phase. Furthermore, the tumor growth rate of F10-siFAK cells was notably slower than that of F10-control in in vivo tumor models. These results show that FAK is an important regulatory gene in melanoma. The stable FAK-knockdown melanoma cell line is an useful tool for further investigation of FAK's function in the progression of melanoma, and also an effective means of drug screening for anti-melanoma therapeutics.
Animals
;
Cell Cycle
;
Cell Line, Tumor
;
Cell Proliferation
;
Down-Regulation
;
Focal Adhesion Protein-Tyrosine Kinases
;
genetics
;
metabolism
;
G1 Phase
;
Gene Knockdown Techniques
;
Melanoma, Experimental
;
enzymology
;
pathology
;
Mice
;
Mice, Inbred C57BL
;
Mitogen-Activated Protein Kinase 1
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Plasmids
;
RNA, Messenger
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Transfection
7.Intratumor injection of recombinant attenuated salmonella carrying Mycobacterium tuberculosis heat shock protein 70 and herpes simplex virus thymidine kinase genes to suppress murine melanoma growth.
Shuguang ZENG ; Qicai LIU ; Suwen WANG ; Ximao PENG ; Jincai ZHANG ; Jiren ZHANG
Journal of Southern Medical University 2012;32(1):101-105
OBJECTIVETo study the effection of suppression murine melanoma growth by Intratumor injection of recombinant attenuated salmonella carrying heat shock protein 70 and herpes simplex virus thymidine kinase genes.
METHODSPlasmids PCMV-mtHSP70-IRES-TK were electro-transferred into salmonella typhimurium SL7207 to construct recombinant salmonella typhimurium. In vivo, Recombinant bacteria were injected into the mouse melanoma and the antitumor effection was observed. The survival period was recorded and safety analysis for this vaccine in each group.
RESULTSIn vivo, the mtHSP70/HSV-tk recombinant bacteria can suppress tumor growth significantly and extend survival. After recombinant Salmonella, 10(9) CFU/mL, was administered as an intratumoral injection, No diarrhea were observed. During therapy, body weight did not change markedly.
CONCLUSIONResults of the animal experiment suggests intratumor injection of recombinant attenuated salmonella typhimurium containing mtHSP70 and HSV-tk genes, has targeting ability against B16 tumor cell and could significantly inhibit tumor growth .
Animals ; Bacterial Proteins ; genetics ; immunology ; Cancer Vaccines ; genetics ; immunology ; pharmacology ; Genetic Therapy ; methods ; HSP70 Heat-Shock Proteins ; genetics ; immunology ; Melanoma, Experimental ; microbiology ; pathology ; therapy ; Mice ; Mice, Inbred C57BL ; Mycobacterium tuberculosis ; genetics ; Salmonella typhimurium ; genetics ; immunology ; Simplexvirus ; enzymology ; genetics ; Skin Neoplasms ; therapy ; Thymidine Kinase ; genetics ; immunology ; Vaccines, Attenuated ; genetics ; immunology ; pharmacology ; Vaccines, DNA ; genetics ; immunology ; pharmacology
8.Evodiamine induces A375-S2 cell death through two different pathways.
Ying ZHANG ; Li-jun WU ; Shin-ichi TASHIRO ; Satoshi ONODERA ; Takashi IKEJIMA
Acta Pharmaceutica Sinica 2003;38(9):650-653
AIMTo study the mechanism of evodiamine-induced cell death of A375-S2.
METHODSThe changes in cell morphology were observed by invert microscopy and Hoechst 33258 staining. DNA fragmentation was assayed by agarose gel electrophoresis. The effects of evodiamine on apoptosis and cell cycle were studied by flow cytometric analysis.
RESULTSEvodiamine was shown to markedly inhibit the growth of A375-S2 cells in dose- and time-dependent manners. At the early stage, evodiamine activated caspase cascades, which unexpectedly did not induce typical DNA fragmentation. At later stage, caspase inhibitors failed to block A375-S2 cell death induced by evodiamine. Evodiamine-induced cell death was shown to be not directly associated with cell cycle arrest.
CONCLUSIONAt the early stage, evodiamine initiates caspase-dependent and a typical apoptosis pathway in A375-S2 cells, but later it induces cell death through caspase-independent pathway which might be necrosis.
Antineoplastic Agents, Phytogenic ; administration & dosage ; pharmacology ; Apoptosis ; Caspase Inhibitors ; Caspases ; metabolism ; Cell Cycle ; Cell Division ; drug effects ; DNA Fragmentation ; physiology ; Dose-Response Relationship, Drug ; Evodia ; chemistry ; Humans ; Melanoma ; enzymology ; pathology ; Plant Extracts ; administration & dosage ; isolation & purification ; pharmacology ; Quinazolines ; administration & dosage ; isolation & purification ; pharmacology ; Time Factors ; Tumor Cells, Cultured