1.Effects of Malassezia isolates on cytokines production associated with melanogenesis by keratinocytes.
Fan CUI ; Xiao-Dong SHE ; Xiao-Fang LI ; Yong-Nian SHEN ; Gui-Xia LÜ ; Wei-Da LIU
Acta Academiae Medicinae Sinicae 2007;29(2):196-200
OBJECTIVETo investigate the co-culture of keratinocytes with Malassezia isolates which cause the pityriasis versicolor with different color and to analyze the changes of cytokines associated with melanogenesis.
METHODSThe effects of Malassezia species with different proportions on the growth rate of keratinocytes was assessed with 5 g/L methyl thiazolyl tetrazolium (MTT). Co-culture of keratinocytes and Malassezia species were performed with isolates from hyer- and hypo-pigmentation areas of pityriasis versicolor. The supernatants were collected at different time points, and the changes of basic fibroblast growth factor (b-FGF), endothelin-1 (ET-1), nerve growth factor-beta (NGF-beta), interleukin-1alpha (IL-1alpha), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), stem cell factor (SCF) were recorded. Three control groups were established accordingly.
RESULTSWhen the ratio between keratinocytes and Malassezia species was lower than 1: 10, the growth rate of keratinocytes was not affected by Malassezia (P > 0.05). When the ratio was increased above 1:20, the growth rate of keratinocytes was significantly inhibited by Malassezia (P < 0.01). The secretions of IL-1alpha, IL-6, TNF-alpha, and ET-1 was significantly increased after the co-culture of keratinocytes and Malassezia (P < 0.01), while those of b-FGF, NGF-beta, and SCF had no significant changes (P > 0.05). Compared with the isolates from the hypo-pigmentation area, ET-1 induced by isolate from hyperpigmentation area significantly increased (P < 0.01).
CONCLUSIONWhen Malassezia isolates are co-cultured with keratinocytes, the secretions of cytokines associated with melanogenesis may differ from each other. ET-1 may play certain role in the hyper-pigmentation of pityriasis versicolor.
Cell Proliferation ; Cells, Cultured ; Cytokines ; biosynthesis ; Humans ; Keratinocytes ; cytology ; metabolism ; microbiology ; Malassezia ; isolation & purification ; physiology ; Melanins ; biosynthesis ; Tinea Versicolor ; microbiology
2.A preliminary study of markers for human hair follicle melanin stem cell.
Xing-Yu MEI ; Zhou-Wei WU ; Cheng-Zhong ZHANG ; Yue SUN ; Wei-Min SHI
Chinese Medical Journal 2019;132(9):1117-1119
Antigens, CD34
;
metabolism
;
Biomarkers
;
metabolism
;
Cell Differentiation
;
physiology
;
Hair Follicle
;
cytology
;
Humans
;
Intramolecular Oxidoreductases
;
metabolism
;
Keratinocytes
;
metabolism
;
Melanins
;
metabolism
;
Melanocytes
;
metabolism
;
PAX3 Transcription Factor
;
metabolism
;
Stem Cells
;
metabolism
3.Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease.
Experimental & Molecular Medicine 2006;38(4):333-347
Inflammation, a self-defensive reaction against various pathogenic stimuli, may become harmful self-damaging process. Increasing evidence has linked chronic inflammation to a number of neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis. In the central nervous system, microglia, the resident innate immune cells play major role in the inflammatory process. Although they form the first line of defense for the neural parenchyma, uncontrolled activation of microglia may directly toxic to neurons by releasing various substances such as inflammatory cytokines (IL-1beta, TNF-alpha, IL-6), NO, PGE
alpha-Synuclein/physiology
;
Signal Transduction
;
Parkinson Disease/*etiology/immunology
;
Multiple Sclerosis/etiology
;
Models, Biological
;
Microglia/immunology/metabolism/*physiology
;
Metalloproteases/physiology
;
Melanins/physiology
;
Matrix Metalloproteinase 3
;
Inflammation Mediators/metabolism
;
Humans
;
Encephalitis/*etiology/immunology
;
Cytokines/secretion
;
Animals
;
Alzheimer Disease/etiology
;
AIDS Dementia Complex/etiology
4.A Study of Skin Color by Melanin Index According to Site, Gestational Age, Birth Weight and Season of Birth in Korean Neonates.
Journal of Korean Medical Science 2005;20(1):105-108
Human skin color shows variations throughout life and influenced by various factors such as race, sex, age and hormones. Since the development of spectrophotometer, many studies on human skin color have been done. However, few studies have been carried out to measure the skin color of neonatal infants. The aim of our study was to assess the variations in skin color according to site, gestational age, birth weight and season of birth in Korean neonates. A total of 447 healthy neonates (3 days after birth, 213 males and 234 females) were enrolled in the present study. Skin pigmentation was measured by reflectance spectrophotometer (Derma-Spectrophotometer(R), Cortex technology, Hadsund, Denmark) at four different sites (forehead, upper arm, abdomen, and inguinal area). The forehead showed highest melanin index in all sites measured (p<0.05). There was no significant difference according to gestational age, birth weight, and season of birth. This result imply that the skin color in neonates is mainly determined genetically.
Arm/pathology
;
Birth Weight
;
Female
;
Forehead/pathology
;
Gestational Age
;
Humans
;
Infant, Newborn
;
Korea
;
Male
;
Melanins/chemistry/*metabolism
;
Seasons
;
Sex Factors
;
Skin/*pathology
;
*Skin Physiology
;
Skin Pigmentation
;
Spectrophotometry
;
Time Factors
5.Bee venom stimulates human melanocyte proliferation, melanogenesis, dendricity and migration.
Songhee JEON ; Nan Hyung KIM ; Byung Soo KOO ; Hyun Joo LEE ; Ai Young LEE
Experimental & Molecular Medicine 2007;39(5):603-613
Pigmentation may result from melanocyte proliferation, melanogenesis, migration or increases in dendricity. Recently, it has been reported that secreted phospholipase A2(sPLA2) known as a component of bee venom (BV), stimulates melanocyte dendricity and pigmentation. BV has been used clinically to control rheumatoid arthritis and to ameliorate pain via its anti-inflammatory and antinociceptive properties. Moreover, after treatment with BV, pigmentation around the injection sites was occasionally observed and the pigmentation lasted a few months. However, no study has been done about the effect of BV on melanocytes. Thus, in the present study, we examined the effect of BV on the proliferation, melanogenesis, dendricity and migration in normal human melanocytes and its signal transduction. BV increased the number of melanocytes dose and time dependently through PKA, ERK, and PI3K/Akt activation. The level of cAMP was also increased by BV treatment. Moreover, BV induced melanogenesis through increased tyrosinase expression. Furthermore, BV induced melanocyte dendricity and migration through PLA2activation. Overall, in this study, we demonstrated that BV may have an effect on the melanocyte proliferation, melanogenesis, dendricity and migration through complex signaling pathways in vitro, responsible for the pigmentation. Thus, our study suggests a possibility that BV may be developed as a therapeutic drug for inducing repigmentation in vitiligo skin.
Animals
;
Base Sequence
;
Bee Venoms/*pharmacology
;
Cell Movement/drug effects
;
Cell Proliferation/drug effects
;
Cells, Cultured
;
Cyclic AMP/metabolism
;
DNA Primers/genetics
;
Forskolin/pharmacology
;
Gene Expression/drug effects
;
Humans
;
Melanins/biosynthesis
;
Melanocytes/cytology/*drug effects/physiology
;
Microphthalmia-Associated Transcription Factor/biosynthesis/genetics
;
Monophenol Monooxygenase/biosynthesis/genetics
;
Signal Transduction/drug effects