1.Biocatalysis of formaldehyde to L-xylose.
Zhailin CHU ; Xiaoyun LU ; Yuwan LIU ; Bo CUI ; Meidong JING ; Huifeng JIANG
Chinese Journal of Biotechnology 2020;36(5):942-948
It is of great significance to use biosynthesis to transform the inorganic substance formaldehyde into organic sugars. Most important in this process was to find a suitable catalyst combination to achieve the dimerization of formaldehyde. In a recent report, an engineered glycolaldehyde synthase was reported to catalyze this reaction. It could be combined with engineered D-fructose-6-phosphate aldolase, a "one-pot enzyme" method, to synthesize L-xylose using formaldehyde and the conversion rate could reach up to 64%. This process also provides a reference for the synthesis of other sugars. With the increasing consumption of non-renewable resources, it was of great significance to convert formaldehyde into sugar by biosynthesis.
Biocatalysis
;
Formaldehyde
;
chemistry
;
Fructose-Bisphosphate Aldolase
;
metabolism
;
Xylose
;
chemical synthesis