1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.The role of human umbilical cord-derived mesenchymal stem cells transplantation in alleviating radiation-induced ovarian injury
Mei ZHANG ; Chao YANG ; Bo CHENG ; Jianan WANG ; Yinghao MA ; Zheng ZHANG ; Qingxiang HOU ; Li MA
Chinese Journal of Radiological Health 2025;34(4):584-589
Objective Using female mice to investigate the reparative effects of human umbilical cord mesenchymal stem cells on radiation-induced ovarian injury. Methods Mice were randomly divided into three groups: a blank control group, a radiation model group, and a cell therapy group. Mice in the radiation model group and the cell therapy group received a single whole-body irradiation of 5 Gy X-rays. Within 2 hours post-irradiation, mice in the cell therapy group underwent ovarian transplantation of UC-MSCs. On days 1, 7, and 14 post-irradiation, body weight was measured, ovarian index was calculated, histopathological changes in ovarian tissue were examined, serum levels of reproductive hormones (follicle-stimulating hormone, anti-Müllerian hormone, and estradiol) were determined, and the colonization of implanted UC-MSCs in the mice was observed. Results On days 1, 7, and 14 post-irradiation, both the cell therapy group and the radiation model group showed decreased body weight compared to the blank control group (P < 0.05). On day 1 post-irradiation compared to day 1 pre-irradiation within the same group, the radiation model group exhibited a greater decrease in body weight than the cell therapy group (P < 0.05). On days 1, 7, and 14 post-irradiation, the ovarian index decreased in both the radiation model group and the cell therapy group compared to the blank control group (P < 0.05). On days 7 and 14 post-irradiation, the ovarian index in the cell therapy group was significantly higher than that in the radiation model group (P < 0.05). Ovarian tissue in the radiation model group exhibited atrophy and a reduction in the number of follicles at all stages. In contrast, follicles in the cell therapy group were large and abundant. On days 1, 7, and 14 post-irradiation, serum follicle-stimulating hormone levels in the cell therapy group were lower than those in the radiation model group, while anti-Müllerian hormone and estradiol levels were higher than those in the radiation model group (P < 0.01). In vivo fluorescence imaging demonstrated that UC-MSCs successfully colonized the ovarian tissue on days 1, 7, and 14 after transplantation. Conclusion UC-MSCs exert a repair effect on radiation-induced ovarian injury in mice.
3.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
4.Effect of Wenpi Pills on lipid metabolism in mice with non-alcoholic fatty liver disease induced by various diets.
Chen-Fang ZHANG ; Kai LIU ; Chao-Wen FAN ; Mei-Ting TAI ; Xin ZHANG ; Rong ZHANG ; Qin-Wen CHEN ; Zun-Li KE
China Journal of Chinese Materia Medica 2025;50(10):2730-2739
The aim of this study was to investigate the improvement effect of Wenpi Pills(WPP) on non-alcoholic fatty liver disease(NAFLD). The experiment was divided into two parts, using C57BL/6 mouse models induced by a high-fat diet(HFD) and a methionine and choline deficiency diet(MCD). The HFD-induced experiment lasted for 16 weeks, while the MCD-induced experiment lasted for 6 weeks. Mice in both parts were divided into four groups: control group, model group, low-dose WPP group(3.875 g·kg~(-1), WPP_L), and high-dose WPP group(15.5 g·kg~(-1), WPP_H). After sample collection from the HFD-induced mice, lipid content in the serum and liver, liver function indexes in the serum, and hepatic pathology were examined. Real-time fluorescent quantitative reverse transcription PCR(qRT-PCR) was used to detect the expression of lipid-related genes. After sample collection from the MCD-induced mice, serum liver function indexes and inflammatory factors were measured, and hepatic pathology and lipid changes were analyzed by hematoxylin-eosin(HE) staining and widely targeted lipidomic profiling, respectively. The results from the HFD-induced experiment showed that, compared with the HFD group, WPP administration significantly reduced the levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), triglyceride(TG), and total cholesterol(TC) in the serum, with the WPP_H group showing the most significant improvement. HE staining results indicated that, compared with the HFD group, WPP treatment improved the morphology of white adipocytes, reducing their size, and alleviated hepatic steatosis and lipid droplet accumulation. The qRT-PCR results suggested that WPP might increase the mRNA expression of liver cholesterol-converting genes, such as liver X receptor α(LXRα) and cytochrome P450 family 27 subfamily A member 1(CYP27A1), as well as lipid consumption genes like peroxisome proliferator-activated receptor α(PPARα) and adenosine mono-phosphate-activated protein kinase(AMPK). Meanwhile, WPP decreased the mRNA expression of lipid synthesis genes, including fatty acid synthetase(FAS), stearoyl-CoA desaturase 1(SCD1), and sterol regulatory element-binding protein 1c(SREBP-1c), thereby reducing liver lipid accumulation. The results from the MCD-induced experiment showed that, compared with the MCD group, WPP administration reduced the levels of ALT, AST, and inflammatory factors in the serum, thereby alleviating liver injury and the inflammatory response. HE staining of liver tissue indicated that WPP effectively improved hepatic steatosis. Non-targeted lipidomics analysis showed that WPP improved lipid metabolism disorders in the liver, mainly by affecting the metabolism of TG and cholesterol esters. In conclusion, WPP can improve hepatic lipid accumulation in NAFLD mice induced by both HFD and MCD. This beneficial effect is primarily achieved by alleviating liver injury and inflammation, as well as regulating lipid metabolism.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Lipid Metabolism/drug effects*
;
Mice
;
Mice, Inbred C57BL
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Diet, High-Fat/adverse effects*
;
Liver/drug effects*
;
Humans
;
Disease Models, Animal
;
Methionine
5.Avatrombopag for platelet engraftment after allogeneic hematopoietic stem cell transplantation in children: a retrospective clinical study.
Xin WANG ; Yuan-Yuan REN ; Xia CHEN ; Chao-Qian JIANG ; Ran-Ran ZHANG ; Xiao-Yan ZHANG ; Li-Peng LIU ; Yu-Mei CHEN ; Li ZHANG ; Yao ZOU ; Fang LIU ; Xiao-Juan CHEN ; Wen-Yu YANG ; Xiao-Fan ZHU ; Ye GUO
Chinese Journal of Contemporary Pediatrics 2025;27(10):1233-1239
OBJECTIVES:
To evaluate the efficacy and safety of avatrombopag in promoting platelet engraftment after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children, compared with recombinant human thrombopoietin (rhTPO).
METHODS:
A retrospective analysis was conducted on 53 pediatric patients who underwent allo-HSCT at the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences from April 2023 to August 2024. Based on medications used during the periengraftment period, patients were divided into two groups: the avatrombopag group (n=15) and the rhTPO group (n=38).
RESULTS:
At days 14, 30, and 60 post-transplant, platelet engraftment was achieved in 20% (3/15), 60% (9/15), and 93% (14/15) of patients in the avatrombopag group, and in 39% (15/38), 82% (31/38), and 97% (37/38) in the rhTPO group, respectively. There were no significant differences between the two groups in platelet engraftment rates at each time point, cumulative incidence of platelet engraftment, overall survival, and relapse-free survival (all P>0.05). Multivariable Cox proportional hazards analysis indicated that acute graft-versus-host disease was an independent risk factor for delayed platelet engraftment (P=0.043).
CONCLUSIONS
In children undergoing allo-HSCT, avatrombopag effectively promotes platelet engraftment, with efficacy and safety comparable to rhTPO, and represents a viable therapeutic option.
Humans
;
Retrospective Studies
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Infant
;
Adolescent
;
Transplantation, Homologous
;
Blood Platelets/drug effects*
;
Thiazoles/therapeutic use*
;
Thrombopoietin/therapeutic use*
;
Thiophenes
6.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
7.Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune.
Mei-Mei ZHAO ; Ting-Ting REN ; Jing-Kang WANG ; Lu YAO ; Ting-Ting LIU ; Ji-Chao ZHANG ; Yang LIU ; Lan YUAN ; Dan LIU ; Jiu-Hui XU ; Peng-Fei TU ; Xiao-Dong TANG ; Ke-Wu ZENG
Protein & Cell 2025;16(2):121-135
Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to pyruvate kinase M2 (PKM2)-dependent conventional caspase-3/gasdermin E (GSDME) cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-programmed death-1 (anti-PD-1). In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.
Pyroptosis/immunology*
;
Humans
;
Endoplasmic Reticulum/immunology*
;
Animals
;
Nogo Proteins/antagonists & inhibitors*
;
Mice
;
Cell Line, Tumor
;
Xanthones/pharmacology*
;
Neoplasms/pathology*
;
Mice, Nude
8.Construction and Application of Characteristic Intelligent Pharmacy Service Platform in Ethnic Areas
Deyan WAGN ; Bin LIANG ; Xu ZHANG ; Yuan LIU ; Bin WU ; Chao MO ; Mei YUAN ; Yu LIU
Herald of Medicine 2024;43(1):64-67
Objective To construct a characteristic intelligent pharmacy service platform in ethnic areas,to optimize pharmacist resources,and to improve the quality of pharmacy services.Methods Taking Liangshan Yi autonomous prefecture of Sichuan Province as an example,the pharmaceutical care software was improved and innovated by adding various forms of medication guidance in Yi language.Results The platform was initially operated and 150 Yi language medication guidance was established.The platform pushes 461 medication guidance content daily,including 276 Yi and Han medication guidance.Patients can receive them through WeChat's official account or short message service(SMS),and the medication guidance rate has been significantly improved.Conclusion The characteristic pharmaceutical service platform in the Yi region can substantially improve the quality of pharmaceutical service,meet the individual demands of Yi patients and provide new ideas and methods for pharmaceutical service in other ethnic areas.
9.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
10.Toxicokinetics of MDMA and Its Metabolite MDA in Rats
Wei-Guang YU ; Qiang HE ; Zheng-Di WANG ; Cheng-Jun TIAN ; Jin-Kai WANG ; Qian ZHENG ; Fei REN ; Chao ZHANG ; You-Mei WANG ; Peng XU ; Zhi-Wen WEI ; Ke-Ming YUN
Journal of Forensic Medicine 2024;40(1):37-42
Objective To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine(MDMA)and its metabolite 4,5-methylene dioxy amphetamine(MDA)in rats af-ter single and continuous administration of MDMA,providing reference data for the forensic identifica-tion of MDMA.Methods A total of 24 rats in the single administration group were randomly divided into 5,10 and 20 mg/kg experimental groups and the control group,with 6 rats in each group.The ex-perimental group was given intraperitoneal injection of MDMA,and the control group was given intraperi-toneal injection of the same volume of normal saline as the experimental group.The amount of 0.5 mL blood was collected from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.In the continuous administration group,24 rats were randomly divided into the experi-mental group(18 rats)and the control group(6 rats).The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5,7,9,11,13,15,17 mg/kg per day,respectively,while the control group was given the same volume of normal saline as the experimental group by in-traperitoneal injection.On the eighth day,the experimental rats were randomly divided into 5,10 and 20 mg/kg dose groups,with 6 rats in each group.MDMA was injected intraperitoneally,and the con-trol group was injected intraperitoneally with the same volume of normal saline as the experimental group.On the eighth day,0.5 mL of blood was taken from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels,and statistical software was employed for data analysis.Results In the single-administration group,peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration,respectively,with the largest detection time limit of 12 h.In the continuous administration group,peak concentrations were reached at 30 min and 1.5 h af-ter administration,respectively,with the largest detection time limit of 10 h.Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows:T=10.362C-1.183,R2=0.974 6;T=7.397 3C-0.694,R2=0.961 5(T:injection time;C:concentration ratio of MDMA to MDA in plasma).Conclusions The toxicokinetic data of MDMA and its metabolite MDA in rats,obtained through single and continuous administration,including peak concentration,peak time,detection time limit,and the relationship between concentration ratio and administration time,provide a theoretical and data foundation for relevant forensic identification.

Result Analysis
Print
Save
E-mail