1.Cardiac Arrest in Traumatic Brain Injury
Oday ATALLAH ; Md Moshiur RAHMAN ; Bipin CHAURASIA ; Vishal CHAVDA ; Amit AGRAWAL
Journal of Neurointensive Care 2024;7(1):12-17
Traumatic brain injury (TBI) is a significant global health concern with substantial contributions to illness and mortality rates. This study aims to scrutinize the intricate interplay between neurological and circulatory abnormalities post-TBI, particularly focusing on the challenge posed by cardiac arrest in TBI patients. The study employs a comprehensive approach, utilizing clinical assessments, electrocardiograms, intracranial pressure monitoring, brain imaging, and biomarker utilization. It explores the effectiveness of these methods in detecting cardiac arrest in TBI patients. Additionally, the research delves into resuscitation techniques, hemodynamic stabilization, intracranial pressure management, and neurological enhancement as potential therapeutic modalities. The results highlight the importance of prompt initiation of cardiopulmonary resuscitation and adherence to advanced cardiac life support protocols in TBI patients with cardiac arrest. Prognostic factors such as injury severity, response time, effectiveness of resuscitation interventions, and pre-existing medical conditions are identified as crucial elements in predicting cardiac arrest outcomes in TBI patients. The study concludes by emphasizing the critical necessity of a comprehensive approach to understand and manage the complex relationship between cardiac arrest and TBI. Incorporating scientific discoveries, clinical perspectives, and technological advancements, the review underscores the importance of addressing this multifaceted medical challenge through a thorough analysis and effective management strategies.
2.Cardiac Arrest in Traumatic Brain Injury
Oday ATALLAH ; Md Moshiur RAHMAN ; Bipin CHAURASIA ; Vishal CHAVDA ; Amit AGRAWAL
Journal of Neurointensive Care 2024;7(1):12-17
Traumatic brain injury (TBI) is a significant global health concern with substantial contributions to illness and mortality rates. This study aims to scrutinize the intricate interplay between neurological and circulatory abnormalities post-TBI, particularly focusing on the challenge posed by cardiac arrest in TBI patients. The study employs a comprehensive approach, utilizing clinical assessments, electrocardiograms, intracranial pressure monitoring, brain imaging, and biomarker utilization. It explores the effectiveness of these methods in detecting cardiac arrest in TBI patients. Additionally, the research delves into resuscitation techniques, hemodynamic stabilization, intracranial pressure management, and neurological enhancement as potential therapeutic modalities. The results highlight the importance of prompt initiation of cardiopulmonary resuscitation and adherence to advanced cardiac life support protocols in TBI patients with cardiac arrest. Prognostic factors such as injury severity, response time, effectiveness of resuscitation interventions, and pre-existing medical conditions are identified as crucial elements in predicting cardiac arrest outcomes in TBI patients. The study concludes by emphasizing the critical necessity of a comprehensive approach to understand and manage the complex relationship between cardiac arrest and TBI. Incorporating scientific discoveries, clinical perspectives, and technological advancements, the review underscores the importance of addressing this multifaceted medical challenge through a thorough analysis and effective management strategies.
3.Cardiac Arrest in Traumatic Brain Injury
Oday ATALLAH ; Md Moshiur RAHMAN ; Bipin CHAURASIA ; Vishal CHAVDA ; Amit AGRAWAL
Journal of Neurointensive Care 2024;7(1):12-17
Traumatic brain injury (TBI) is a significant global health concern with substantial contributions to illness and mortality rates. This study aims to scrutinize the intricate interplay between neurological and circulatory abnormalities post-TBI, particularly focusing on the challenge posed by cardiac arrest in TBI patients. The study employs a comprehensive approach, utilizing clinical assessments, electrocardiograms, intracranial pressure monitoring, brain imaging, and biomarker utilization. It explores the effectiveness of these methods in detecting cardiac arrest in TBI patients. Additionally, the research delves into resuscitation techniques, hemodynamic stabilization, intracranial pressure management, and neurological enhancement as potential therapeutic modalities. The results highlight the importance of prompt initiation of cardiopulmonary resuscitation and adherence to advanced cardiac life support protocols in TBI patients with cardiac arrest. Prognostic factors such as injury severity, response time, effectiveness of resuscitation interventions, and pre-existing medical conditions are identified as crucial elements in predicting cardiac arrest outcomes in TBI patients. The study concludes by emphasizing the critical necessity of a comprehensive approach to understand and manage the complex relationship between cardiac arrest and TBI. Incorporating scientific discoveries, clinical perspectives, and technological advancements, the review underscores the importance of addressing this multifaceted medical challenge through a thorough analysis and effective management strategies.
4.Cardiac Arrest in Traumatic Brain Injury
Oday ATALLAH ; Md Moshiur RAHMAN ; Bipin CHAURASIA ; Vishal CHAVDA ; Amit AGRAWAL
Journal of Neurointensive Care 2024;7(1):12-17
Traumatic brain injury (TBI) is a significant global health concern with substantial contributions to illness and mortality rates. This study aims to scrutinize the intricate interplay between neurological and circulatory abnormalities post-TBI, particularly focusing on the challenge posed by cardiac arrest in TBI patients. The study employs a comprehensive approach, utilizing clinical assessments, electrocardiograms, intracranial pressure monitoring, brain imaging, and biomarker utilization. It explores the effectiveness of these methods in detecting cardiac arrest in TBI patients. Additionally, the research delves into resuscitation techniques, hemodynamic stabilization, intracranial pressure management, and neurological enhancement as potential therapeutic modalities. The results highlight the importance of prompt initiation of cardiopulmonary resuscitation and adherence to advanced cardiac life support protocols in TBI patients with cardiac arrest. Prognostic factors such as injury severity, response time, effectiveness of resuscitation interventions, and pre-existing medical conditions are identified as crucial elements in predicting cardiac arrest outcomes in TBI patients. The study concludes by emphasizing the critical necessity of a comprehensive approach to understand and manage the complex relationship between cardiac arrest and TBI. Incorporating scientific discoveries, clinical perspectives, and technological advancements, the review underscores the importance of addressing this multifaceted medical challenge through a thorough analysis and effective management strategies.
5.Molecular Characterization of Various Trichomonad Species Isolated from Humans and Related Mammals in Indonesia.
Mudyawati KAMARUDDIN ; Masaharu TOKORO ; Md Moshiur RAHMAN ; Shunsuke ARAYAMA ; Anggi P N HIDAYATI ; Din SYAFRUDDIN ; Puji B S ASIH ; Hisao YOSHIKAWA ; Ei KAWAHARA
The Korean Journal of Parasitology 2014;52(5):471-478
Trichomonad species inhabit a variety of vertebrate hosts; however, their potential zoonotic transmission has not been clearly addressed, especially with regard to human infection. Twenty-one strains of trichomonads isolated from humans (5 isolates), pigs (6 isolates), rodents (6 isolates), a water buffalo (1 isolate), a cow (1 isolate), a goat (1 isolate), and a dog (1 isolate) were collected in Indonesia and molecularly characterized. The DNA sequences of the partial 18S small subunit ribosomal RNA (rRNA) gene or 5.8S rRNA gene locus with its flanking regions (internal transcribed spacer region, ITS1 and ITS2) were identified in various trichomonads; Simplicimonas sp., Hexamastix mitis, and Hypotrichomonas sp. from rodents, and Tetratrichomonas sp. and Trichomonas sp. from pigs. All of these species were not detected in humans, whereas Pentatrichomonas hominis was identified in humans, pigs, the dog, the water buffalo, the cow, and the goat. Even when using the high-resolution gene locus of the ITS regions, all P. hominis strains were genetically identical; thus zoonotic transmission between humans and these closely related mammals may be occurring in the area investigated. The detection of Simplicimonas sp. in rodents (Rattus exulans) and P. hominis in water buffalo in this study revealed newly recognized host adaptations and suggested the existence of remaining unrevealed ranges of hosts in the trichomonad species.
Animals
;
DNA, Protozoan/genetics
;
DNA, Ribosomal Spacer/genetics
;
Humans
;
Indonesia/epidemiology
;
*Mammals
;
Protozoan Infections/epidemiology/*parasitology
;
RNA, Protozoan/genetics
;
RNA, Ribosomal, 18S/genetics
;
Species Specificity
;
Trichomonadida/*classification/*genetics/isolation & purification
6.Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA.
Md Moshiur RAHMAN ; Kenji YAGITA ; Akira KOBAYASHI ; Yosaburo OIKAWA ; Amjad I A HUSSEIN ; Takahiro MATSUMURA ; Masaharu TOKORO
The Korean Journal of Parasitology 2013;51(4):401-411
Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear sub-conformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.
Acanthamoeba/classification/genetics/growth & development/*isolation & purification
;
Acanthamoeba Keratitis/*parasitology
;
Cell Nucleus/*genetics
;
DNA, Mitochondrial/*genetics
;
DNA, Protozoan/genetics
;
Humans
;
Japan
;
Molecular Sequence Data
;
Phylogeny
;
RNA, Ribosomal, 16S/*genetics
;
RNA, Ribosomal, 18S/*genetics