1.Analysis of 29 Targeted Genes for Non-Obstructive Azoospermia: The Relationship between Genetic Testing and Testicular Histology
Rossella CANNARELLA ; Matteo BERTELLI ; Rosita A. CONDORELLI ; Marija VILAJ ; Sandro La VIGNERA ; Davor JEZEK ; Aldo E. CALOGERO
The World Journal of Men's Health 2023;41(2):422-433
Purpose:
To analyze the presence of potentially pathogenic variants of 29 candidate genes known to cause spermatogenic failure (SPGF) in patients with non-obstructive azoospermia (NOA) who underwent testicular histology.
Materials and Methods:
Forty-eight patients with unexplained NOA referred to the Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia for testicular biopsy. They were divided into three groups: those who had cryptorchidism (n=9), those with varicocele (n=14), and those with idiopathic NOA (n=25). All included patients underwent blood withdrawal for next-generation sequencing (NGS) analysis and gene sequencing.
Results:
We found a possible genetic cause in 4 patients with idiopathic NOA (16%) and in 2 with cryptorchidism (22%). No pathogenic or possibly pathogenic mutations were identified in patients with varicocele. Variants of undetermined significance (VUS) were found in 11 patients with idiopathic NOA (44%), 3 with cryptorchidism (33%), and 8 patients with varicocele (57%). VUSs of the USP9Y gene were the most frequently as they were found in 14 out of 48 patients (29%). In particular, the VUS USP9Y c.7434+14del was found in 11 patients. They showed varied histological pictures, including Sertoli cell-only syndrome, mixed atrophy, and hypospermatogenesis, regardless of cryptorchidism or varicocele. No direct correlation was found between the gene mutation/variant and the testicular histological picture.
Conclusions
Different mutations of the same gene cause various testicular histological pictures. These results suggest that it is not the gene itself but the type of mutation/variation that determines the testicular histology picture. Based on the data presented above, it remains challenging to design a genetic panel with prognostic value for the outcome of testicular sperm extraction in patients with NOA.
2.COVID-19 vaccine candidates and vaccine development platforms available worldwide
Duman NILGUN ; ALzaidi ZAHRAA ; Aynekin BUSRA ; Taskin DUYGU ; Demirors BUSRA ; Yildirim ABDULBAKI ; Sahin Olcay IZEM ; Bilgili FAIK ; Turanli Tahir EDA ; Beccari TOMMASO ; Bertelli MATTEO ; Dundar MUNIS
Journal of Pharmaceutical Analysis 2021;11(6):675-682
The pandemic caused by the worldwide spread of the coronavirus,which first appeared in 2019,has been named coronavirus disease 19 (COVID-19).More than 4.5 million deaths have been recorded due to the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),according to the World Health Organization.COVID-19 Dashboard in September 2021.Apart from the wildtype,other variations have been successfully transmitted early in the outbreak although they were not discovered until March 2020.Modifications in the SARS-CoV-2 genetic material,such as mutation and recombi-nation,have the ability to modify the viral life span,along with transitivity,cellular tropism,and symptom severity.Several processes are involved in introducing novel vaccines to the population,including vaccine manufacturing,preclinical studies,Food and Drug Administration permission or cer-tification,processing,and marketing.COVID-19 vaccine candidates have been developed by a number of public and private groups employing a variety of strategies,such as RNA,DNA,protein,and viral vectored vaccines.This comprehensive review,which included the most subsequent evidence on unique features of SARS-CoV-2 and the associated morbidity and mortality,was carried out using a systematic search of recent online databases in order to generate useful knowledge about the COVID-19 updated versions and their consequences on the disease symptoms and vaccine development.
3.Etiopathogenesis of sacroiliitis: implications for assessment and management
Manuela BARONIO ; Hajra SADIA ; Stefano PAOLACCI ; Domenico PRESTAMBURGO ; Danilo MIOTTI ; Vittorio A. GUARDAMAGNA ; Giuseppe NATALINI ; Matteo BERTELLI
The Korean Journal of Pain 2020;33(4):294-304
The sacroiliac joints connect the base of the sacrum to the ilium. When inflamed, they are suspected to cause low back pain. Inflammation of the sacroiliac joints is called sacroiliitis. The severity of the pain varies and depends on the degree of inflammation. Sacroiliitis is a hallmark of seronegative spondyloarthropathies. The presence or absence of chronic sacroiliitis is an important clue in the diagnosis of low back pain. This article aims to provide a concise overview of the anatomy, physiology, and molecular biology of sacroiliitis to aid clinicians in the assessment and management of sacroiliitis. For this narrative review, we evaluated articles in English published before August 2019 in PubMed. Then, we selected articles related to the painful manifestations of the sacroiliac joint. From the retrieved articles, we found that chronic sacroiliitis may be caused by various forms of spondyloarthritis, such as ankylosing spondyloarthritis. Sacroiliitis can also be associated with inflammatory bowel disease, Crohn’s disease, gout, tuberculosis, brucellosis, and osteoarthritis, indicating common underlying etiological factors. The pathophysiology of sacroiliitis is complex and may involve internal, environmental, immunological, and genetic factors. Finally, genetic factors may also play a central role in progression of the disease. Knowing the genetic pre-disposition for sacroiliitis can be useful for diagnosis and for formulating treatment regimens, and may lead to a substantial reduction in disease severity and duration and to improved patient performance.
4.Next-generation sequencing: toward an increase in the diagnostic yield in patients with apparently idiopathic spermatogenic failure.
Rossella CANNARELLA ; Rosita A CONDORELLI ; Stefano PAOLACCI ; Federica BARBAGALLO ; Giulia GUERRI ; Matteo BERTELLI ; Sandro LA VIGNERA ; Aldo E CALOGERO
Asian Journal of Andrology 2021;23(1):24-29
A large proportion of patients with idiopathic spermatogenic failure (SPGF; oligozoospermia or nonobstructive azoospermia [NOA]) do not receive a diagnosis despite an extensive diagnostic workup. Recent evidence has shown that the etiology remains undefined in up to 75% of these patients. A number of genes involved in germ-cell proliferation, spermatocyte meiotic divisions, and spermatid development have been called into play in the pathogenesis of idiopathic oligozoospermia or NOA. However, this evidence mainly comes from case reports. Therefore, this study was undertaken to identify the molecular causes of SPGF. To accomplish this, 15 genes (USP9Y, NR5A1, KLHL10, ZMYND15, PLK4, TEX15, TEX11, MEIOB, SOHLH1, HSF2, SYCP3, TAF4B, NANOS1, SYCE1, and RHOXF2) involved in idiopathic SPGF were simultaneously analyzed in a cohort of 25 patients with idiopathic oligozoospermia or NOA, accurately selected after a thorough diagnostic workup. After next-generation sequencing (NGS) analysis, we identified the presence of rare variants in the NR5A1 and TEX11 genes with a pathogenic role in 3/25 (12.0%) patients. Seventeen other different variants were identified, and among them, 13 have never been reported before. Eleven out of 17 variants were likely pathogenic and deserve functional or segregation studies. The genes most frequently mutated were MEIOB, followed by USP9Y, KLHL10, NR5A1, and SOHLH1. No alterations were found in the SYCP3, TAF4B, NANOS1, SYCE1, or RHOXF2 genes. In conclusion, NGS technology, by screening a specific custom-made panel of genes, could help increase the diagnostic rate in patients with idiopathic oligozoospermia or NOA.