1.Calcium ionophore induced histamine and tryptase release from human mast cells.
Shao-heng HE ; Yong-song HE ; Hua XIE
Chinese Journal of Applied Physiology 2005;21(1):69-72
AIMTo examine the ability of calcium ionophore (CI) to induce tryptase and histamine release from human mast cells and its mechanisms.
METHODSEnzymatically dispersed cells from human colons were challenged with CI, and the cell supernatants after challenge were collected. Tryptase release was determined with a sandwich ELISA procedure and histamine release was measured using a glass fibre-based fluorometric assay.
RESULTSCI was able to induce a concentration dependent release of histamine and tryptase from human colon mast cells following 15 min incubation. The maximum of induced histamine and tryptase release were approximately 5.3 and 2.8 fold more than the levels of spontaneous release, respectively. CI at the concentrations higher than 1.0 micromol/L was able to induce significantly more histamine than tryptase release from mast cells. The time course revealed that the action of CI on mast cells started from 10 s, peaked at 6 min and lasted at least 15 min following incubation. Pertussis toxin and metabolic inhibitors were able to inhibit mast cell response to CI.
CONCLUSIONHuman colon mast cells were able to release tryptase and histamine in response to CI. The process seemed to be associated with the activation of a G-protein coupled receptor on the membrane of mast cells and requires cell energy supply.
Calcium Ionophores ; pharmacology ; Cells, Cultured ; Colon ; cytology ; Histamine ; metabolism ; Humans ; Mast Cells ; drug effects ; metabolism ; secretion ; Tryptases ; metabolism
2.Effects of bone marrow-derived mast cells on expressions of type II collagen and glycosaminoglycan in co-cultured chondrocytes.
Qingqing OUYANG ; Jinjun ZHAO ; Min YANG
Journal of Southern Medical University 2014;34(5):669-673
OBJECTIVETo investigate the influence of the bone marrow-derived mast cells (BMMCs) on the expression of type II collagen and glycosaminoglycan (GAG) in chondrocytes co-cultured with BMMCs.
METHODSPrimarily cultured mouse BMMCs at 4 weeks and the second passage of chondrocytes were plated in a Transwell co-cultured system at a ratio of 1:10 in the presence or absence of sodium cromoglycate (DSCG) or compound 48/80 (C48/80). The chondrocytes were harvested and lysed for detecting type II collagen expression with ELISA and Western blotting and GAG expression using 1,9 dimethylmethylene blue (DBM).
RESULTSAfter a 24-hour culture, the chondrocytes co-cultured with BMMCs showed similar expression levels of type II collagen and GAG to the control group regardless of the presence of DSCG (P>0.05). Compared with chondrocytes cultured alone or with BMMCs, the co-cultured chondrocytes in the presence of C48/80 showed significantly lower expressions of type II collagen and GAG (P<0.01). Such results did not vary significantly as the culture time was extended to 48 h.
CONCLUSIONC48/80-activated BMMCs can reduce the expression of type II collagen and GAG in chondrocytes in the co-culture system.
Animals ; Bone Marrow Cells ; cytology ; Cells, Cultured ; Chondrocytes ; cytology ; Coculture Techniques ; Collagen Type II ; metabolism ; Glycosaminoglycans ; metabolism ; Mast Cells ; cytology ; Mice
3.Diagnostic Significance of BAT in Anaphylaxis to Non-ionic Contrast Media.
Hao-yue ZHANG ; Su-jun XU ; Xiao-xian TANG ; Ji-jun NIU ; Xiang-jie GUO ; Cai-rong GAO
Journal of Forensic Medicine 2015;31(3):188-190
OBJECTIVE:
To investigate the diagnostic significance of basophil activation test (BAT) in anaphylaxis to non-ionic contrast media through testing the content of CD63, mast cell-carboxypeptidase A3 (MC-CPA3), and terminal complement complex SC5b-9 of the individuals by testing their levels in the normal immune group and the anaphylaxis groups to β-lactam drugs and non -ionic contrast media.
METHODS:
The CD63 expression of basophilic granulocyte in blood was detected by flow cytometry. The levels of MC-CPA3 in blood serum and SC5b-9 in blood plasma were detected by ELISA.
RESULTS:
The CD63 expression of basophilic granulocyte in blood, the levels of MC-CPA3 and SC5b-9 of anaphylaxis to non-ionic contrast media and β-lactam drugs were significantly higher than that in normal immune group (P < 0.05).
CONCLUSION
There is activation of basophilic granulocytes, mast cells and complement system in anaphylaxis to non-ionic contrast media. BAT can be used to diagnose the anaphylaxis to non-ionic contrast media.
Anaphylaxis/diagnosis*
;
Basophils/cytology*
;
Carboxypeptidases A/metabolism*
;
Complement Membrane Attack Complex/metabolism*
;
Contrast Media
;
Flow Cytometry
;
Granulocytes/cytology*
;
Humans
;
Mast Cells/cytology*
;
Tetraspanin 30/metabolism*
4.Distribution of mast cells and its role in the pathogenesis of Hirschsprung disease.
Heng ZHENG ; Yu-min CHEN ; Ming-fa WEI ; Zhi-yi GUO ; Shi-yu ZHAO ; Ping LI
Chinese Journal of Gastrointestinal Surgery 2009;12(5):507-510
OBJECTIVETo investigate the distribution of mast cells (MC) in colon tissue of Hirschsprung disease (HD) and explore the role of mast cells in the pathogenesis of HD.
METHODSForty-one cases of HD (male 23, female 18), age from 2 months to 15 years, and eight age-matched normal cases were enrolled in this study. The distribution of MC in all layers of colon was examined by immunohistochemistry with mouse antihuman mast cell tryptase monoclonal antibody.
RESULTSThe count of MC in all layers of colon aganglionic segments of HD was significantly higher as compared with colon ganglionic segments of HD and normal controls (21.47+/-3.59 vs 3.18+/-0.87, 2.75+/-0.51). The average optical density values(A) of MC in aganglionic and ganglionic segments significantly decreased as compared to normal control (0.38+/-0.10,0.31+/-0.11 vs 0.51+/-0.08).
CONCLUSIONMast cells may play an important role in the pathogenesis of HD.
Adolescent ; Child ; Child, Preschool ; Female ; Hirschsprung Disease ; metabolism ; pathology ; Humans ; Infant ; Intestinal Mucosa ; pathology ; Male ; Mast Cells ; cytology ; metabolism ; pathology ; Tryptases ; metabolism
5.Distribution change of mast cells in human nasal polyps.
Guimin ZHANG ; Wenjie SHI ; Peiyong SUN ; Peng LIN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2014;28(17):1337-1340
OBJECTIVE:
To investigate the distribution of mast cells in nasal polyps.
METHOD:
Biopsy specimens from patients with nasal polyps (n = 20) and control patients (n = 8) were obtained and included in this study. The distribution of mast cells in nasal polyps and the expression of chemokines (CCL5, CCL11, CX3CL1, IL-8, IL-6) in the epithelial cells of normal nasal mucosa and nasal polyps was determined by immunohistochemistry.
RESULT:
Mast cells migrate to intraepithelial in nasal polyps and the expression of chemokines (CCL5, CCL11, CX3CL1, IL-8) was up regulated in the epithelial cells of nasal polyps compare to normal nasal mucosa.
CONCLUSION
Our findings showed that mast cells migrate to intraepithelial in nasal polyps and the over expression of chemotaxins (CCL5, CCL11, CX3CL1, IL-8) may be response for mast cells' migration in nasal polyps. Mast cells might be associated with the development of nasal polyps.
Chemokine CCL11
;
metabolism
;
Chemokine CCL5
;
metabolism
;
Chemokine CX3CL1
;
metabolism
;
Epithelial Cells
;
metabolism
;
Humans
;
Immunohistochemistry
;
Interleukin-6
;
metabolism
;
Interleukin-8
;
metabolism
;
Mast Cells
;
metabolism
;
pathology
;
Nasal Mucosa
;
cytology
;
metabolism
;
Nasal Polyps
;
metabolism
;
pathology
;
Up-Regulation
6.Stress-induced Alterations in Mast Cell Numbers and Proteinase-activated Receptor-2 Expression of the Colon: Role of Corticotrophin-releasing Factor.
Dong Hoon KIM ; Young Ju CHO ; Jang Hee KIM ; Young Bae KIM ; Kwang Jae LEE
Journal of Korean Medical Science 2010;25(9):1330-1335
This study was performed in order to assess whether acute stress can increase mast cell and enterochromaffin (EC) cell numbers, and proteinase-activated receptor-2 (PAR2) expression in the rat colon. In addition, we aimed to investigate the involvement of corticotrophin-releasing factor in these stress-related alterations. Eighteen adult rats were divided into 3 experimental groups: 1) a saline-pretreated non-stressed group, 2) a saline-pretreated stressed group, and 3) an astressin-pretreated stressed group. The numbers of mast cells, EC cells, and PAR2-positive cells were counted in 6 high power fields. In proximal colonic segments, mast cell numbers of stressed rats tended to be higher than those of non-stressed rats, and their PAR2-positive cell numbers were significantly higher than those of non-stressed rats. In distal colonic segments, mast cell numbers and PAR2-positive cell numbers of stressed rats were significantly higher than those of non-stressed rats. Mast cell and PAR2-positive cell numbers of astressin-pretreated stressed rats were significantly lower than those of saline-pretreated stressed rats. EC cell numbers did not differ among the three experimental groups. Acute stress in rats increases mast cell numbers and mucosal PAR2 expression in the colon. These stress-related alterations seem to be mediated by release of corticotrophin-releasing factor.
Animals
;
Colon/*metabolism
;
Corticotropin-Releasing Hormone/antagonists & inhibitors/metabolism/pharmacology/*physiology
;
Enterochromaffin Cells/cytology
;
Male
;
Mast Cells/*cytology/immunology/metabolism
;
Peptide Fragments/pharmacology
;
Rats
;
Rats, Wistar
;
Receptor, PAR-2/*metabolism
;
Restraint, Physical
;
*Stress, Physiological
7.Mast Cells in Allergic Asthma and Beyond.
Sebastian REUTER ; Michael STASSEN ; Christian TAUBE
Yonsei Medical Journal 2010;51(6):797-807
Mast cells have been regarded for a long time as effector cells in IgE mediated type I reactions and in host defence against parasites. However, they are resident in all environmental exposed tissues and express a wide variety of receptors, suggesting that these cells can also function as sentinels in innate immune responses. Indeed, studies have demonstrated an important role of mast cells during the induction of life-saving antibacterial responses. Furthermore, recent findings have shown that mast cells promote and modulate the development of adaptive immune responses, making them an important hinge of innate and acquired immunity. In addition, mast cells and several mast cell-produced mediators have been shown to be important during the development of allergic airway diseases. In the present review, we will summarize findings on the role of mast cells during the development of adaptive immune responses and highlight their function, especially during the development of allergic asthma.
Animals
;
Anti-Infective Agents/pharmacology
;
Asthma/*immunology/metabolism
;
Cytokines/metabolism
;
Histamine/metabolism
;
Humans
;
Hypersensitivity/*immunology/metabolism
;
Immune System
;
Immunoglobulin E/immunology
;
Leukotrienes/metabolism
;
Mast Cells/*cytology
;
Mice
;
Models, Biological
;
Prostaglandins/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
8.Role of mast cells in estrogen-mediated experimental endometriosis in rats.
Kai-qing LIN ; Li-bo ZHU ; Xin-mei ZHANG ; Jun LIN
Journal of Zhejiang University. Medical sciences 2015;44(3):269-277
OBJECTIVETo investigate the role of mast cells in the pathogenesis of estrogen-mediated experimental endometriosis in rats.
METHODSEndometriosis model was established by transplanting autologous fragments of uterus to the inner surface of the abdominal wall in 24 un-pregnant female Sprague Dawley rats. The rats were divided randomly into three groups (n=8 in each group), and were injected with different doses of estrogen: high-dose group (200 μg·kg⁻¹·d⁻¹), low-dose group (100 μg·kg⁻¹·d⁻¹) and the control group (0 μg·kg⁻¹·d⁻¹). The ovaries were surgically removed in high-dose and low-dose groups. Four rats were sacrificed in each group at 2 and 4 weeks after surgery. Their serum estradiol levels, size of lesions, total number of mast cells and degranulations, serum TNF-α levels, expression of tryptase and NGF in tissues were analyzed and compared among groups.
RESULTSThe mean levels of serum estradiol 2 weeks and 4 weeks after model established and serum TNF-α at 4 weeks in estrogen-treated groups were significantly higher than those in control group (all P<0.05). The mean size of endometriotic lesions in the estrogen-treated groups was also significantly larger than that in the control group 2 weeks and 4 weeks after model established (all P<0.05). Meanwhile, both at week 2 and week 4, the mean ratio of degranulation/total number of mast cells by toluidine blue staining in low-dose estrogen group was significantly higher than that in the control group (P<0.05). The expression of NGF in high-dose estrogen group was significantly higher than that in the control group at week 4(P<0.05).
CONCLUSIONEstrogen can promote the growth of endometriotic lesions and may mediate the pathogenesis of endometriosis by activating mast cells, which may be associated with increasing TNF-α and NGF levels.
Animals ; Cell Degranulation ; Disease Models, Animal ; Endometriosis ; pathology ; Estrogens ; pharmacology ; Female ; Mast Cells ; cytology ; Nerve Growth Factor ; metabolism ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Tumor Necrosis Factor-alpha ; blood
9.New era for mucosal mast cells: their roles in inflammation, allergic immune responses and adjuvant development.
Yosuke KURASHIMA ; Hiroshi KIYONO
Experimental & Molecular Medicine 2014;46(3):e83-
To achieve immune homeostasis in such a harsh environment as the intestinal mucosa, both active and quiescent immunity operate simultaneously. Disruption of gut immune homeostasis leads to the development of intestinal immune diseases such as colitis and food allergies. Among various intestinal innate immune cells, mast cells (MCs) play critical roles in protective immunity against pathogenic microorganisms, especially at mucosal sites. This suggests the potential for a novel MC-targeting type of vaccine adjuvant. Dysregulated activation of MCs also results in inflammatory responses in mucosal compartments. The regulation of this yin and yang function of MCs remains to be elucidated. In this review, we focus on the roles of mucosal MCs in the regulation of intestinal allergic reaction, inflammation and their potential as a new target for the development of mucosal adjuvants.
Adjuvants, Immunologic/*therapeutic use
;
Animals
;
Humans
;
Hypersensitivity/*immunology/prevention & control
;
Inflammation/immunology/metabolism/prevention & control
;
Intestinal Mucosa/cytology/*immunology
;
Mast Cells/*immunology
10.An in vitro study on substance P-stimulated neuro-immune mechanism of mast cell degranulation.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2015;29(12):1118-1120
OBJECTIVE:
The goal of this study was to study the mechanism of substance P (SP)-mediated the neural control of mast cell (MC) degranulation.
METHOD:
Bone marrow mast cells from mice were cultured with stem cell factor (SCF), IL-3 and IL-4 (group A) and SCF, IL-3 (group B) for four weeks. Then the cells were harvested and reserved for studies. Western Blot hybridization technique was used to detect the expression of FcεR I α and NK-1R on MCs from the two groups. Then such cells were activated with SP (0, 0. 01, 0. 10, 1. 00, 10. 00 µg/ml, respectively) for 30 min. The histamine released into the supernatant and stored in the protoplasm was quantified by enzyme linked immunosorbent assay (ELISA). And the percentage of histamine release was calculated as a percent of total histamine content.
RESULT:
The expressions of FcεR I α and NK-1R on these mast cells in group A were statistically higher than in group B (P<0. 05). The MCs from two groups can be actived when stimulated by SP, but the level of MC degranulation in group A was higher than group B (P<0. 05).
CONCLUSION
Neuropeptide may stimulate MC degranulation through immunological and non-immunological pathways. In summary, the current study provides us with better understanding of the mechanism of neuropeptide-controlled MC deranulation, and this should be helpful for the further research involved in the mechanism and treatmemt of airway hyper-reactivity.
Animals
;
Bone Marrow Cells
;
Cell Degranulation
;
Cells, Cultured
;
Culture Media
;
chemistry
;
Histamine
;
metabolism
;
Interleukin-3
;
pharmacology
;
Interleukin-4
;
pharmacology
;
Mast Cells
;
cytology
;
metabolism
;
Mice
;
Stem Cell Factor
;
pharmacology
;
Substance P
;
pharmacology