1.Omics for deciphering oral microecology.
Yongwang LIN ; Xiaoyue LIANG ; Zhengyi LI ; Tao GONG ; Biao REN ; Yuqing LI ; Xian PENG
International Journal of Oral Science 2024;16(1):2-2
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Humans
;
Phylogeny
;
Biomimetics
;
Dysbiosis
;
Homeostasis
;
Mass Spectrometry
2.Identification of novel biomarkers for varicocele using iTRAQ LC-MS/MS technology.
Xianfeng LU ; Na LI ; Lufang LI ; Yongai WU ; Xuefeng LYU ; Yingli CAO ; Jianrong LIU ; Qin QIN
Chinese Medical Journal 2024;137(3):371-372
3.Effects of Apis dorsata honey on the mRNA expression of selected CYP450, pro-apoptotic, and anti-apoptotic genes during induced cytotoxicity in cyclophosphamide-treated human lung carcinoma (A549) cells
Jay T. Dalet ; Jose Kenneth T. Narag ; Arnold V. Hallare ; Francisco T. Heralde
Acta Medica Philippina 2024;58(19):37-49
INTRODUCTION
One of the novel strategies in cancer treatment is the combination of conventional chemotherapeutic drugs and natural products. In a previous study, co-treatment of the anti-cancer drug cyclophosphamide (CP) with honey from giant honey bee (Apis dorsata) resulted to a dose-dependent increase in its cytotoxic effect in human lung carcinoma (A549) cells. However, the molecular mechanism of this combinatorial effect remains unknown.
OBJECTIVESIn this study, the effect of A. dorsata honey on the expression of selected CYP450 genes at the mRNA level, as well as the proapoptotic gene CASP8 and antiapoptotic gene BCL2 was investigated in CP-treated A549 cells.
METHODSMTT Assay was performed to determine the cell viability of A549 cells after treatment with CP with or without A. dorsata honey, as well as the EC50 of CP with honey thereafter. RT-qPCR was then performed to study the effect of A. dorsata honey on the expression of selected CYP450 genes as well as CASP8 and BCL2 genes in CPtreated A549 cells. LC-MS was carried out to screen for putative compounds in A. dorsata honey which may possibly have anti-cancer activity.
RESULTSHoney in the lowest concentration (0.6% v/v) most effectively enhanced the cytotoxic effect of CP. CYP2J2 and CYP1B1 indicated a 2.38-fold and 1.49-fold upregulation, respectively as compared to untreated cells. This cytotoxic effect is further enhanced by upregulation of CASP8 that is paralleled by a downregulation of BCL2. Phytosphingosine and sphinganine are honey constituents which may be linked to the increased cytotoxicity of CP observed in A549 cells.
CONCLUSIONThis study provides further knowledge on the molecular basis by which A. dorsata honey potentiates the cytotoxic effect of cyclophosphamide in A549 cells.
Cyclophosphamide ; Lc-ms ; Liquid Chromatography-mass Spectrometry ; Apoptosis
4.Isolation and identification of a polyester-polyurethane degrading bacterium Bacillus altitudinis YX8-1.
Caiting ZENG ; Junbin JI ; Fanghui DING ; Zhoukun LI ; Hui CAO ; Zhongli CUI ; Xin YAN
Chinese Journal of Biotechnology 2023;39(5):1976-1986
Although polyurethane (PUR) plastics play important roles in daily life, its wastes bring serious environmental pollutions. Biological (enzymatic) degradation is considered as an environmentally friendly and low-cost method for PUR waste recycling, in which the efficient PUR-degrading strains or enzymes are crucial. In this work, a polyester PUR-degrading strain YX8-1 was isolated from the surface of PUR waste collected from a landfill. Based on colony morphology and micromorphology observation, phylogenetic analysis of 16S rDNA and gyrA gene, as well as genome sequence comparison, strain YX8-1 was identified as Bacillus altitudinis. The results of high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) showed that strain YX8-1 was able to depolymerize self-synthesized polyester PUR oligomer (PBA-PU) to produce a monomeric compound 4, 4'-methylene diphenylamine. Furthermore, strain YX8-1 was able to degrade 32% of the commercialized polyester PUR sponges within 30 days. This study thus provides a strain capable of biodegradation of PUR waste, which may facilitate the mining of related degrading enzymes.
Polyurethanes/chemistry*
;
Polyesters/chemistry*
;
Chromatography, Liquid
;
Phylogeny
;
Tandem Mass Spectrometry
;
Bacteria/metabolism*
;
Biodegradation, Environmental
5.Chemical constituents of diterpenoids from Boswellia carterii.
Rong-Ye WANG ; Hui XIA ; Yong-Xiang WANG ; Hao HUANG ; Bo-Kai WANG ; Meng DU ; Yue-Lin SONG ; Yun-Fang ZHAO ; Jiao ZHENG ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2023;48(9):2464-2470
This paper explored the chemical constituents of Boswellia carterii by column chromatography on silica gel, Sephadex LH-20, ODS column chromatography, and semi-preparative HPLC. The structures of the compounds were identified by physicochemical properties and spectroscopic data such as infrared radiation(IR), ultra violet(UV), mass spectrometry(MS), and nuclear magnetic resonance(NMR). Seven diterpenoids were isolated and purified from n-hexane of B. carterii. The isolates were identified as(1S,3E,7E,11R,12R)-11-hydroxy-1-isopropyl-4,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadeca-3,7-dien-5-one(1),(1R,3S,4R,7E,11E)-4,8,12,15,15-pentamethyl-14-oxabicyclo[11.2.1]hexadeca-7,11-dien-4-ol(2), incensole(3),(-)-(R)-nephthenol(4), euphraticanoid F(5), dilospirane B(6), and dictyotin C(7). Among them, compounds 1 and 2 were new and their absolute configurations were determined by comparison of the calculated and experimental electronic circular dichroisms(ECDs). Compounds 6 and 7 were obtained from B. carterii for the first time.
Molecular Structure
;
Boswellia/chemistry*
;
Diterpenes/chemistry*
;
Mass Spectrometry
6.LC-MS analysis of 2-(2-phenylethyl) chromones in sodium chloride-treated suspension cells of Aquilaria sinensis.
Yu DU ; Xiao-Xue ZHANG ; Ze-Kun ZHANG ; Wen-Jing WANG ; Bei-Bei ZHANG ; Ming-Liang ZHANG ; Yang WANG ; Xiang-Yu GE ; She-Po SHI
China Journal of Chinese Materia Medica 2023;48(9):2480-2489
Qualitative and quantitative analysis of 2-(2-phenylethyl) chromones in sodium chloride(NaCl)-treated suspension cells of Aquilaria sinensis was conducted by UPLC-Q-Exactive-MS and UPLC-QQQ-MS/MS. Both analyses were performed on a Waters T3 column(2.1 mm×50 mm, 1.8 μm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as mobile phases at gradient elution. MS data were collected by electrospray ionization in positive ion mode. Forty-seven phenylethylchromones was identified from NaCl-treated suspension cell samples of A. sinensis using UPLC-Q-Exactive-MS, including 22 flindersia-type 2-(2-phenylethyl) chromones and their glycosides, 10 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and 15 mono-epoxy or diepoxy-5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones. Additionally, 25 phenylethylchromones were quantitated by UPLC-QQQ-MS/MS. Overall, the rapid and efficient qualitative and quantitative analysis of phenylethylchromones in NaCl-treated suspension cells of A. sinensis by two LC-MS techniques, provides an important reference for the yield of phenylethylchromones in Aquilariae Lignum Resinatum using in vitro culture and other biotechnologies.
Chromones
;
Sodium Chloride
;
Chromatography, Liquid
;
Flavonoids
;
Tandem Mass Spectrometry
;
Thymelaeaceae
7.Safety evaluation of Tibetan medicine Qishiwei Zhenzhu Pills based on serum pharmacochemistry and network pharmacology.
Zhi-Yi YAN ; Yong-Hua ZONG ; Cheng-Fei ZHANG ; Li-Li WU ; Ling-Ling QIN ; Tong-Hua LIU
China Journal of Chinese Materia Medica 2023;48(9):2538-2551
To explore the mechanism of the active ingredients of Qishiwei Zhenzhu Pills in inhibiting the hepatorenal toxicity of the zogta component based on serum pharmacochemistry and network pharmacology, thereby providing references for the clinical safety application of Qishiwei Zhenzhu Pills. The small molecular compounds in the serum containing Qishiwei Zhenzhu Pills of mice were identified by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). Then, by comprehensively using Traditional Chinese Medicines Systems Pharmacology(TCMSP), High-throughput Experiment-and Reference-guided Database(HERB), PubChem, GeneCards, SuperPred, and other databases, the active compounds in the serum containing Qishiwei Zhenzhu Pills were retrieved and their action targets were predicted. The predicted targets were compared with the targets of liver and kidney injury related to mercury toxicity retrieved from the database, and the action targets of Qishiwei Zhenzhu Pills to inhibit the potential mercury toxicity of zogta were screened out. Cytoscape was used to construct the active ingredient in Qishiwei Zhenzhu Pills-containing serum-action target network, and STRING database was used to construct the protein-protein interaction(PPI) network of intersection targets. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out on the target genes by the DAVID database. The active ingredient-target-pathway network was constructed, and the key ingredients and targets were screened out for molecular docking verification. The results showed that 44 active compounds were identified from the serum containing Qishiwei Zhenzhu Pills, including 13 possible prototype drug ingredients, and 70 potential targets for mercury toxicity in liver and kidney were identified. Through PPI network topology analysis, 12 key target genes(HSP90AA1, MAPK3, STAT3, EGFR, MAPK1, APP, MMP9, NOS3, PRKCA, TLR4, PTGS2, and PARP1) and 6 subnetworks were obtained. Through GO and KEGG analysis of 4 subnetworks containing key target genes, the interaction network diagram of active ingredient-action target-key pathway was constructed and verified by molecular docking. It was found that taurodeoxycholic acid, N-acetyl-L-leucine, D-pantothenic acid hemicalcium, and other active ingredients may regulate biological functions and pathways related to metabolism, immunity, inflammation, and oxidative stress by acting on major targets such as MAPK1, STAT3, and TLR4, so as to inhibit the potential mercury toxicity of zogta in Qishiwei Zhenzhu Pills. In conclusion, the active ingredients of Qishiwei Zhenzhu Pills may have a certain detoxification effect, thus inhibiting the potential mercury toxicity of zogta and playing a role of reducing toxicity and enhancing effect.
Animals
;
Mice
;
Medicine, Tibetan Traditional
;
Network Pharmacology
;
Molecular Docking Simulation
;
Tandem Mass Spectrometry
;
Toll-Like Receptor 4
;
Medicine, Chinese Traditional
;
Mercury
;
Drugs, Chinese Herbal/toxicity*
8.Component identification and analysis in vivo of Sanhan Huashi formula.
Xu ZHANG ; Yan-Nan KOU ; Chen-Si YAO ; Yan-Yan ZHOU ; Chun-Ying WANG ; Qiao WANG ; Shu-Yi FENG ; Wei-Hao WANG ; Bin YANG ; Min LI
China Journal of Chinese Materia Medica 2023;48(8):2126-2143
Sanhan Huashi formula(SHF) is the intermediate of a newly approved traditional Chinese medicine(TCM) Sanhan Huashi Granules for the treatment of COVID-19 infection. The chemical composition of SHF is complex since it contains 20 single herbal medicines. In this study, UHPLC-Orbitrap Exploris 240 was used to identify the chemical components in SHF and in rat plasma, lung and feces after oral administration of SHF, and heat map was plotted for characterizing the distribution of the chemical components. Chromatographic separation was conducted on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 μm) using 0.1% formic acid(A)-acetonitrile(B) as mobile phases in a gradient elution. Electrospray ionization(ESI) source was used to acquire data in positive and negative mode. By reference to quasi-molecular ions and MS/MS fragment ions and in combination with MS spectra of reference substances and compound information in literature reports, 80 components were identified in SHF, including 14 flavonoids, 13 coumarins, 5 lignans, 12 amino-compounds, 6 terpenes and 30 other compounds; 40 chemical components were identified in rat plasma, 27 in lung and 56 in feces. Component identification and characterization of SHF in vitro and in vivo lay foundations for disclosure of its pharmacodynamic substances and elucidation of the scientific connotation.
Rats
;
Animals
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
COVID-19
;
Lignans
9.Nature-effect transformation mechanism of mulberry leaves and silkworm droppings based on chemical composition analysis.
Ai-Ping DENG ; Yue ZHANG ; Yi-Han WANG ; Jia-Chen ZHAO ; Jin-Xiu QIAN ; Li-Ping KANG ; Tie-Gui NAN ; Zhi-Lai ZHAN
China Journal of Chinese Materia Medica 2023;48(8):2160-2185
Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.
Animals
;
Bombyx
;
Morus/chemistry*
;
Chlorogenic Acid/analysis*
;
Gas Chromatography-Mass Spectrometry
;
Chromatography, High Pressure Liquid/methods*
;
Plant Leaves/chemistry*
10.Adjuvant rice optimization of rice-steamed Rehmanniae Radix and its anti-osteoporosis effect.
Hong-Yu YANG ; Ying ZHANG ; Meng-Xi WU ; Hui ZHU ; Hong-Mei LI ; Lu-Qi HUANG ; Hui TIAN ; Yuan YUAN
China Journal of Chinese Materia Medica 2023;48(10):2749-2756
The present study aimed to investigate the effect of various adjuvant rice on the quality of rice-steamed Rehmanniae Radix(RSRR) with Japonica rice, millet, yellow rice, black rice, and glutinous rice as raw materials, and analyze the anti-osteoporosis effect of RSRR by the optimal adjuvant rice. On the basis of the established UPLC-MS/MS method for the determination of the content of catalpol and rehmannioside D, comprehensive weighted scoring method was employed to evaluate the effect of various auxiliary rice on the quality of RSRR with the content of catalpol and rehmannioside D, character score, and taste score as indicators to optimize adjuvant rice. The osteoporosis model was induced by ovariectomy in rats. SD rats were randomly divided into a sham operation group, a model group, a positive control group, and low-dose and high-dose groups of Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, and Epimedii Folium-RSRR. After treatment for 12 weeks, body weight, bone calcium content, and bone mineral density were mea-sured. The results showed that Japonica rice was selected as the optimal adjuvant due to the highest comprehensive score of RSRR steamed by Japonica rice. Rehmanniae Radix, RSRR, steamed Rehmanniae Radix, as well as Epimedii Folium-RSRR, could improve osteoporosis by increasing bone calcium content and bone mineral density. RSRR was superior to Rehmanniae Radix in improving osteo-porosis. However, there was no significant difference between RSRR and steamed Rehmanniae Radix. This study confirmed that Japo-nica rice was the optimal adjuvant rice of RSRR and verified the anti-osteoporosis effect of RSRR, which laid a foundation for further research on the pharmacological action and mechanism of RSRR.
Female
;
Rats
;
Animals
;
Oryza
;
Chromatography, Liquid
;
Calcium
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Drugs, Chinese Herbal/pharmacology*
;
Osteoporosis/drug therapy*
;
Rehmannia
;
Adjuvants, Pharmaceutic


Result Analysis
Print
Save
E-mail