1.Distally-extending muscle fibers across involved joints: study of long muscles and tendons of wrist and ankle in late-term fetuses and adult cadavers
Shaohe WANG ; Shogo HAYASHI ; Zhe-Wu JIN ; Ji Hyun KIM ; Masahito YAMAMOTO ; Gen MURAKAMI ; Shinichi ABE
Anatomy & Cell Biology 2023;56(1):46-53
It is unclear whether forearm and crural muscle fibers extend distally across the wrist and ankle joints, respectively.We hypothesized, in late-term fetuses, an over-production of muscle bellies extending over the joint. Muscle fibers in histological sections from unilateral wrists and ankles of 16 late-term fetuses (30–40 weeks) were examined and compared with 15 adult cadavers. Muscle fibers of the flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) in fetuses, especially muscle bellies to the third and fourth fingers, were found to extend far distally beyond the radiocarpal joint.The extensor digitorum and extensor pollicis longus on the extensor side of the wrist were found to carry distally-extending muscle fibers, but these fibers did not extend beyond the distal end of the radius. In the ankle, most muscle bundles in the flexor hallucis longus (FHL), fibularis brevis (FB) and extensor digitorum longus extended distally beyond the talocrural joint, with most FB muscle fibers reaching the level of the talocalcaneal joint. In adult cadavers, muscle fibers of the FDP and FHL did not reach the levels of the radiocarpal and talocrural joints, respectively, whereas the FB muscle belly always reached the talocalcaneal joint. Similarly, some of the FDS reached the level of the radiocarpal joint. Generally, infants’ movements at the wrist and ankle could result in friction injury to over-extended muscle. However, the calcaneal and FDP tendons might protect the FB and FDS tendons, respectively, from friction stress.
2.Topographical relationships of the yolk sac remnant and vitelline vessels with the midgut loop in the extra-embryonic coelom of human embryos
Zhe-Wu JIN ; Ji Hyun KIM ; Masahito YAMAMOTO ; Gen MURAKAMI ; Shin-ichi ABE ; José Francisco RODRÍGUEZ-VÁZQUEZ
Anatomy & Cell Biology 2022;55(3):356-366
The yolk sac is supplied by the vitelline artery and vein (VA, VV), which run through the yolk stalk in combination with the omphaloenteric duct. Moreover, the VV takes a free posterior course outside the midgut mesentery containing the secondarily-developed superior mesenteric vein (SMV). However, the regression process of these structures has not been demonstrated photographically. The present study evaluated serial histological sections from 20 embryos of stages 15–19 or crown-rump length (CRL) 7.5–20 mm. All specimens carried the SMV as sequential tissue slits. However, an omphaloenteric duct with epithelia continuous with the midgut loop was not observed. In smaller embryos (CRL <13 mm) the VA extended distally or anteriorly from the midgut apex in the extra-embryonic coelom, whereas in larger embryos (CRL 16–20 mm) the artery was absent from the distal side of the apex. The entire course or part of the VV outside the mesentery was always seen, but four larger embryos lacked the venous terminal near the duodenum. A vacuole-like remnant of the yolk sac was present in all smaller embryos (CRL <10 mm), but was absent from 7 of the 11 larger embryos. The size of the remnant was equal to the thickness of the VA or VV, with the remnant being sandwiched between the VA and VV. Moreover, the regressing yolk sac often communicated with or opened to the VV. Consequently, the yolk sac regressed first, followed by the regression of the VA until 6 weeks. The yolk stalk was clearly observed until 5 weeks.
3.Fetal cervical zygapophysial joint with special reference to the associated synovial tissue:a histological study using near-term human fetuses
Kei KITAMURA ; Shogo HAYASHI ; Zhe Wu JIN ; Masahito YAMAMOTO ; Gen MURAKAMI ; José Francisco RODRÍGUEZ-VÁZQUEZ ; Hitoshi YAMAMOTO
Anatomy & Cell Biology 2021;54(1):65-73
Human fetal cervical vertebrae are characterized by the large zygapophysial joint (ZJ) extending posteriorly. During our recent studies on regional differences in the shape, extent, and surrounding tissue of the fetal ZJ, we incidentally found a cervical-specific structure of synovial tissues. This study aimed to provide a detailed evaluation of the synovial structure using sagittal and horizontal sections of 20 near-term fetuses. The cervical ZJ consistently had a large cavity with multiple recesses at the margins and, especially at the anterior end, the recess interdigitated with or were located close to tree-like tributaries of the veins of the external vertebral plexus. In contrast to the flat and thin synovial cell lining of the recess, the venous tributary had cuboidal endothelial cells. No or few elastic fibers were identified around the ZJ. The venous-synovial complex seems to be a transient morphology at and around birth, and it may play a role in the stabilization of the growing cervical ZJ against frequent spontaneous dislocation reported radiologically in infants. The venous-synovial complex in the cervical region should be lost and replaced by elastic fibers in childhood or adolescence. However, the delayed development of the ligament flavum is also likely to occur in the lumbar ZJ in spite of no evidence of a transient venous-synovial structure. The cuboidal venous endothelium may simply represent the high proliferation rate for the growing complex.
4.Fetal cervical zygapophysial joint with special reference to the associated synovial tissue:a histological study using near-term human fetuses
Kei KITAMURA ; Shogo HAYASHI ; Zhe Wu JIN ; Masahito YAMAMOTO ; Gen MURAKAMI ; José Francisco RODRÍGUEZ-VÁZQUEZ ; Hitoshi YAMAMOTO
Anatomy & Cell Biology 2021;54(1):65-73
Human fetal cervical vertebrae are characterized by the large zygapophysial joint (ZJ) extending posteriorly. During our recent studies on regional differences in the shape, extent, and surrounding tissue of the fetal ZJ, we incidentally found a cervical-specific structure of synovial tissues. This study aimed to provide a detailed evaluation of the synovial structure using sagittal and horizontal sections of 20 near-term fetuses. The cervical ZJ consistently had a large cavity with multiple recesses at the margins and, especially at the anterior end, the recess interdigitated with or were located close to tree-like tributaries of the veins of the external vertebral plexus. In contrast to the flat and thin synovial cell lining of the recess, the venous tributary had cuboidal endothelial cells. No or few elastic fibers were identified around the ZJ. The venous-synovial complex seems to be a transient morphology at and around birth, and it may play a role in the stabilization of the growing cervical ZJ against frequent spontaneous dislocation reported radiologically in infants. The venous-synovial complex in the cervical region should be lost and replaced by elastic fibers in childhood or adolescence. However, the delayed development of the ligament flavum is also likely to occur in the lumbar ZJ in spite of no evidence of a transient venous-synovial structure. The cuboidal venous endothelium may simply represent the high proliferation rate for the growing complex.
5.Fetal development of the human trapezius and sternocleidomastoid muscles
Kwang Ho CHO ; Ichiro MORIMOTO ; Masahito YAMAMOTO ; Shinya HANADA ; Gen MURAKAMI ; Jose Francisco RODRÍGUEZ-VÁZQUEZ ; Shinichi ABE
Anatomy & Cell Biology 2020;53(4):405-410
At present, there is no photographic evidence of splitting of the trapezius and sternocleidomastoid muscles (SCMs), which share a common anlage that extends caudally toward the limb bud in the embryo at a length of 9 mm. Therefore, the aim of the present study was to identify which structures divide the caudal end of the common anlage at the first sign of splitting into two muscles. In 11 mm-long specimens, the SCM and trapezius muscles were identified as a single mesenchymal condensation. In 15 and 18 mm-long specimens, the SCM and trapezius muscles were separated and extended posteriorly and lymphatic tissues appeared in a primitive lateral cervical space surrounded by the SCM (anterior). In 21 mm-long specimens, the lymphatic vessels were dilated and the accompanying afferents were forming connections with the subcutaneous tissue through a space between the SCM and trapezius muscles. In 27 mm-long specimens, cutaneous lymphatic vessels were evident and had entered the deep tissue between the SCM and trapezius muscles. Vascular dilation may be viewed as a result of less mechanical stress or pressure after muscle splitting.
6.Cervical nerve roots and the dural sheath: a histological study using human fetuses near term
Kei KITAMURA ; Masahito YAMAMOTO ; Yoshinosuke HIROTA ; Noriyuki SATO ; Toshimasa MACHIDA ; Noboru ISHIKAWA ; Hitoshi YAMAMOTO ; Gen MURAKAMI ; Shinichi ABE
Anatomy & Cell Biology 2020;53(4):451-459
We have previously reported that the thoracolumbar posterior nerve root shows a tortuous epidural course, based on studies of human fetuses near term. For comparison with the cervical nerve, examinations were conducted using frontal, sagittal and horizontal sections of cervical vertebrae from 22 fetuses at 30–38 weeks of gestation. The cervical nerve root showed a short, straight and lateral course near the zygapophysial joint. Multiple rather than single bundles of the cervical posterior root seemed to account for the majority of sensory nerve fibers innervating the upper extremity. Fasciculation of rootlets was evident near the thoracolumbar spinal cord, whereas it was seen in the dural pocket at the nerve exit from the dural sac although both sites were subdural. As in the thoracolumbar region, the nerve sheath was continuous with the dura mater and independently surrounded each of the anterior and posterior roots. Radicular arteries were few in the cervical region. In 2 of the 22 fetuses (31 weeks and 33 weeks), there was a segmental, unilateral abnormality of nerve rootlet fasciculation where the dorsal root ganglion was located lateral or peripheral to the intervertebral region. Long nerve roots running inferiorly are a necessary adaptation to the delayed and marked growth of the thoracolumbar vertebral column.In children, the cervical nerve roots are likely to be affected by movement or dislocation of the vertebrae. The segmental abnormality of the cervical nerve root may be linked to rare variations in the brachial plexus.
7.A temporary disc-like structure at the median atlanto-axial joint in human fetuses
Koichiro SAKANAKA ; Masahito YAMAMOTO ; Hidetomo HIROUCHI ; Ji Hyun KIM ; Gen MURAKAMI ; José Francisco RODRÍGUEZ VÁZQUEZ ; Shin ichi ABE
Anatomy & Cell Biology 2019;52(4):436-442
Adult
;
Aging
;
Atlanto-Axial Joint
;
Fetus
;
Humans
;
Infant, Newborn
;
Joints
;
Zygapophyseal Joint
8.Nervus terminalis and nerves to the vomeronasal organ: a study using human fetal specimens
Zhe Wu JIN ; Kwang Ho CHO ; Shunichi SHIBATA ; Masahito YAMAMOTO ; Gen MURAKAMI ; Jose Francisco RODRÍGUEZ-VÁZQUEZ
Anatomy & Cell Biology 2019;52(3):278-285
The human nervus terminalis (terminal nerve) and the nerves to the vomeronasal organ (VNON) are both associated with the olfactory nerves and are of major interest to embryologists. However, there is still limited knowledge on their topographical anatomy in the nasal septum and on the number and distribution of ganglion cells along and near the cribriform plate of the ethmoid bone. We observed serial or semiserial sections of 30 fetuses at 7–18 weeks (crown rump length [CRL], 25–160 mm). Calretinin and S100 protein staining demonstrated not only the terminal nerve along the anterior edge of the perpendicular lamina of the ethmoid, but also the VNON along the posterior edge of the lamina. The terminal nerve was composed of 1–2 nerve bundles that passed through the anterior end of the cribriform plate, whereas the VNON consisted of 2–3 bundles behind the olfactory nerves. The terminal nerve ran along and crossed the posterior side of the nasal branch of the anterior ethmoidal nerve. Multiple clusters of small ganglion cells were found on the lateral surfaces of the ethmoid's crista galli, which are likely the origin of both the terminal nerve and VNON. The ganglions along the crista galli were ball-like and 15–20 µm in diameter and, ranged from 40–153 in unilateral number according to our counting at 21-µm-interval except for one specimen (480 neurons; CRL, 137 mm). An effect of nerve degeneration with increasing age seemed to be masked by a remarkable individual difference.
Calbindin 2
;
Ethmoid Bone
;
Fetus
;
Ganglion Cysts
;
Humans
;
Individuality
;
Masks
;
Nasal Septum
;
Nerve Degeneration
;
Neurons
;
Olfactory Nerve
;
Vomeronasal Organ
9.Development of the pulmonary pleura with special reference to the lung surface morphology: a study using human fetuses.
Masahito YAMAMOTO ; Jőrg WILTING ; Hiroshi ABE ; Gen MURAKAMI ; Jose Francisco RODRÍGUEZ-VÁZQUEZ ; Shin Ichi ABE
Anatomy & Cell Biology 2018;51(3):150-157
In and after the third trimester, the lung surface is likely to become smooth to facilitate respiratory movements. However, there are no detailed descriptions as to when and how the lung surface becomes regular. According to our observations of 33 fetuses at 9–16 weeks of gestation (crown-rump length [CRL], 39–125 mm), the lung surface, especially its lateral (costal) surface, was comparatively rough due to rapid branching and outward growing of bronchioli at the pseudoglandular phase of lung development. The pulmonary pleura was thin and, beneath the surface mesothelium, no or little mesenchymal tissue was detectable. Veins and lymphatic vessels reached the lung surface until 9 weeks and 16 weeks, respectively. In contrast, in 8 fetuses at 26–34 weeks of gestation (CRL, 210–290 mm), the lung surface was almost smooth because, instead of bronchioli, the developing alveoli faced the external surfaces of the lung. Moreover, the submesothelial tissue became thick due to large numbers of dilated veins connected to deep intersegmental veins. CD34-positive, multilayered fibrous tissue was also evident beneath the mesothelium in these stages. The submesothelial tissue was much thicker at the basal and mediastinal surfaces compared to apical and costal surfaces. Overall, rather than by a mechanical stress from the thoracic wall and diaphragm, a smooth lung surface seemed to be established largely by the thick submesothelial tissue including veins and lymphatic vessels until 26 weeks.
Diaphragm
;
Epithelium
;
Female
;
Fetus*
;
Humans*
;
Lung*
;
Lymphatic Vessels
;
Pleura*
;
Pregnancy
;
Pregnancy Trimester, Third
;
Stress, Mechanical
;
Thoracic Wall
;
Veins
10.CD57 (Leu-7, HNK-1) immunoreactivity seen in thin arteries in the human fetal lung.
Satoshi ISHIZUKA ; Zhe Wu JIN ; Masahito YAMAMOTO ; Gen MURAKAMI ; Takeshi TAKAYAMA ; Katsuhiko HAYASHI ; Shin ichi ABE
Anatomy & Cell Biology 2018;51(2):105-112
CD57 (synonyms: Leu-7, HNK-1) is a well-known marker of nerve elements including the conductive system of the heart, as well as natural killer cells. In lung specimens from 12 human fetuses at 10–34 weeks of gestation, we have found incidentally that segmental, subsegmental, and more peripheral arteries strongly expressed CD57. Capillaries near developing alveoli were often or sometimes positive. The CD57-positive tissue elements within intrapulmonary arteries seemed to be the endothelium, internal elastic lamina, and smooth muscle layer, which corresponded to tissue positive for a DAKO antibody reactive with smooth muscle actin we used. However, the lobar artery and pulmonary arterial trunk as well as bronchial arteries were negative. Likewise, arteries in and along any abdominal viscera, as well as the heart, thymus, and thyroid, did not express CD57. Thus, the lung-specific CD57 reactivity was not connected with either of an endodermal- or a branchial arch-origin. CD57 antigen is a sugar chain characterized by a sulfated glucuronic acid residue that is likely to exist in some glycosphingolipids. Therefore, a chemical affinity or an interaction might exist between CD57-positive arterioles and glycosphingolipids originating from alveoli, resulting in acceleration of capillary budding to make contact with the alveolar wall. CD57 might therefore be a functional marker of the developing air-blood interface that characterizes the fetal lung at the canalicular stage.
Acceleration
;
Actins
;
Antigens, CD57
;
Arteries*
;
Arterioles
;
Bronchial Arteries
;
Capillaries
;
Endothelium
;
Fetus
;
Glucuronic Acid
;
Glycosphingolipids
;
Heart
;
Humans*
;
Killer Cells, Natural
;
Lung*
;
Muscle, Smooth
;
Pregnancy
;
Thymus Gland
;
Thyroid Gland
;
Viscera

Result Analysis
Print
Save
E-mail