1.Retentive strength of different intracanal posts in restorations of anterior primary teeth: an in vitro study.
Mahtab MEMARPOUR ; Fereshteh SHAFIEI ; Maryam ABBASZADEH
Restorative Dentistry & Endodontics 2013;38(4):215-221
OBJECTIVES: To determine the retentive strength and failure mode of undercut composite post, glass fiber post and polyethylene fiber post luted with flowable composite resin and resin-cement. MATERIALS AND METHODS: Coronal parts of 120 primary canine teeth were sectioned and specimens were treated endodontically. The teeth were randomly divided into 6 groups (n = 20). Prepared root canals received intracanal retainers with a short composite post, undercut composite post, glass fiber post luted with flowable resin or resin-cement, and polyethylene fiber post luted with flowable resin or resin-cement. After crown reconstruction, samples were tested for retentive strength and failure mode. Statistical analysis was done with one-way ANOVA and Tukey tests (p < 0.05). RESULTS: There were statistically significant differences between groups (p = 0.001). Mean bond strength in the undercut group was significantly greater than in the short composite post (p = 0.030), and the glass fiber post (p = 0.001) and the polyethylene fiber post group luted with resin-cement (p = 0.008). However, the differences between the undercut group and the groups with flowable composite as the luting agent were not significant (p = 0.068, p = 0.557). Adhesive failure was more frequent in the fiber post groups. CONCLUSIONS: Although the composite post with undercutting showed the greatest resistance to dislodgement, fiber posts cemented with flowable composite resin provided acceptable results in terms of retentive strength and fracture mode.
Adhesives
;
Composite Resins
;
Crowns
;
Cuspid
;
Dental Cements
;
Dental Pulp Cavity
;
Glass
;
Polyethylene
;
Resin Cements
;
Tooth
;
Tooth, Deciduous*
2.Nitric oxide, 8-hydroxydeoxyguanosine, and total antioxidant capacity in human seminal plasma of infertile men and their relationship with sperm parameters
Maryam GHOLINEZHAD ; Azadeh ALIARAB ; Ghasem ABBASZADEH-GOUDARZI ; Yousefreza YOUSEFNIA-PASHA ; Niusha SAMADAIAN ; Korush RASOLPOUR-ROSHAN ; Hemat AGHAGOLZADEH-HAJI ; Milad MOHAMMADOO-KHORASANI
Clinical and Experimental Reproductive Medicine 2020;47(1):54-60
Objective:
Oxidative stress plays a key role in the pathogenesis of male infertility. But, the adverse effects of oxidative biomarkers on sperm quality remain unclear. This study aimed to investigate the levels of nitric oxide (NO), 8-hydroxydesoxyguanosine (8-OHdG), and total antioxidant capacity (TAC) oxidative biomarkers in seminal plasma and their relationship with sperm parameters.
Methods:
A total of 77 volunteers participated in the study, including fertile (n=40) and infertile men (n=37). NO, 8-OHdG, and TAC levels were measured using the ferric reducing ability of plasma, Griess reagent method and an enzyme-linked immunosorbent assay kit, respectively.
Results:
The mean values of sperm parameters in the infertile group were significantly lower than those in the fertile group (p<0.001). The mean 8-OHdG in the seminal plasma of infertile men was significantly higher (p=0.013) than those of controls, while the mean TAC was significantly lower (p=0.046). There was no significant difference in NO level between the two groups. The elevated seminal 8-OHdG levels were negatively correlated with semen volume, total sperm counts and morphology (p<0.001, p=0.001 and p=0.052, respectively). NO levels were negatively correlated with semen volume, total sperm counts and morphology (p=0.014, p=0.020 and p=0.060, respectively). Positive correlations between TAC and both sperm count and morphology (p=0.043 and p=0.025, respectively) were also found.
Conclusion
These results suggested that increased levels of NO and 8-OHdG in seminal plasma could have a negative effect on sperm function by inducing damage to the sperm DNA hence their fertility potentials. Therefore, these biomarkers can be useful in the diagnosis and treatment of male infertility.
3.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
4.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
5.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
6.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
7.Stem cell transplantation and functional recovery after spinal cord injury: a systematic review and meta-analysis.
Hojjat Allah ABBASZADEH ; Somayeh NIKNAZAR ; Shahram DARABI ; Navid AHMADY ROOZBAHANY ; Ali NOORI-ZADEH ; Seyed Kamran GHOREISHI ; Maryam Sadat KHORAMGAH ; Yousef SADEGHI
Anatomy & Cell Biology 2018;51(3):180-188
Spinal cord injury is a significant cause of motor dysfunctions. There is no definite cure for it, and most of the therapeutic modalities are only symptomatic treatment. In this systematic review and meta-analysis, the effectiveness of stem cell therapy in the treatment of the spinal cord injuries in animal models was studied and evaluated. A systematic search through medical databases by using appropriate keywords was conducted. The relevant reports were reviewed in order to find out cases in which inclusion and exclusion criteria had been fulfilled. Finally, 89 articles have been considered, from which 28 had sufficient data for performing statistical analyses. The findings showed a significant improvement in motor functions after cell therapy. The outcome was strongly related to the number of transplanted cells, site of injury, chronicity of the injury, type of the damage, and the induction of immune-suppression. According to our data, improvements in functional recovery after stem cell therapy in the treatment of spinal cord injury in animal models was noticeable, but its outcome is strongly related to the site of injury, number of transplanted cells, and type of transplanted cells.
Cell- and Tissue-Based Therapy
;
Contusions
;
Models, Animal
;
Spinal Cord Injuries*
;
Spinal Cord*
;
Stem Cell Transplantation*
;
Stem Cells*