1.Aquaporin water channels in exocrine glands.
Martin STEWARD ; Tae Hwan KWON
Journal of Korean Medical Science 2000;15(Suppl):S7-S9
No abstract available.
Animal
;
Aquaporins/metabolism*
;
Exocrine Glands/metabolism*
;
Water/metabolism*
2.Cystic fibrosis transmembrane conductance regulator and SLC26 transporters in HCO₃⁻ secretion by pancreatic duct cells.
Hiroshi ISHIGURO ; Martin STEWARD ; Satoru NARUSE
Acta Physiologica Sinica 2007;59(4):465-476
Pancreatic duct cells secrete HCO3(-) ions into a HCO3(-)-rich luminal fluid (~140 mmol/L in human) against at least a 6-fold concentration gradient. Candidate mechanisms for HCO3(-) transport across the apical membrane include Cl(-)-HCO3(-)exchange by an SLC26 anion transporter and diffusion via the HCO3(-) conductance of cystic fibrosis transmembrane conductance regulator (CFTR). Members of the SLC26 family are known to mediate Cl(-)-HCO3(-) exchange across the apical membrane of other epithelia and both SLC26A6 and SLC26A3 have been detected in pancreatic ducts. Co-expression studies have also revealed that murine slc26a6 and slc26a3 physically interact with CFTR through the STAS domain of slc26 and the R domain of CFTR, resulting in mutually enhanced activity. Other studies have indicated that these exchangers are electrogenic: slc26a6 mediating 1Cl(-)-2HCO3(-) exchange and slc26a3 mediating 2Cl(-)-1HCO3(-) exchange. Recent experiments using isolated pancreatic ducts from slc26a6(-)/(-) mice suggest that slc26a6 mediates most of the Cl(-)-dependent secretion of HCO3(-) across the apical membrane in the mouse and the data are consistent with the reported electrogenicity of slc26a6. However, the role of SLC26A6 in human pancreatic HCO3(-) secretion is less clear because human ducts are capable of secreting much higher concentrations of HCO3(-). The role of SLC26A6 must now be evaluated in a species such as the guinea pig which, like the human, is capable of secreting HCO3(-) at a concentration of ~140 mmol/L. From existing guinea pig data we calculate that a 1Cl(-)-2HCO3(-) exchanger such as slc26a6 would be unable to secrete HCO3(-) against such a steep gradient. On the other hand, the HCO3(-) conductance of CFTR could theoretically support secretion of HCO3(-) to a much higher concentrations. CFTR may therefore play a more important role than SLC26A6 in HCO3(-) secretion by the guinea pig and human pancreas.
Animals
;
Bicarbonates
;
metabolism
;
Chloride-Bicarbonate Antiporters
;
physiology
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
physiology
;
Guinea Pigs
;
Humans
;
Membrane Transport Proteins
;
physiology
;
Mice
;
Pancreatic Ducts
;
cytology
;
secretion
3.Bicarbonate transport in microperfused pancreatic ducts.
Hiroshi ISHIGURO ; Satoru NARUSE ; Motoji KITAGAWA ; Atsushi SUZUKI ; Akiko YAMAMOTO ; Shigeru BH KO ; Tetsuo HAYAKAWA ; Maynard CASE ; Martin STEWARD
Journal of Korean Medical Science 2000;15(Suppl):S16-S16
No abstract available.
Animal
;
Bicarbonates/metabolism*
;
Biological Transport/physiology
;
Pancreatic Ducts/metabolism*
;
Perfusion