1.Single-Position Robotic-Assisted Prone Lateral Fusion: Technical Description and Feasibility
Quan You YEO ; Martin H. PHAM ; Jacob Yoong-Leong OH
Asian Spine Journal 2024;18(1):118-123
Single-position lateral interbody fusion surgery has gained traction over the years because of reduced surgical time and improved operating theater workflow. With the introduction of robotics in spine surgery, surgeons can place pedicle screws with a high degree of accuracy and efficiency; moreover, the robot allows us to localize the disk space and perform endplate preparation accurately with minimal radiation. In this study, we discuss the potential synergistic benefits of integrating robotic-assisted spine surgery and singleposition prone lateral surgery. We share our technique and provide the operative nuances of using the Mazor X Stealth Edition system (Medtronic, Minneapolis, MN, USA). We highlighted the potential synergistic benefits of integrating both the prone lateral and robotic-assisted surgical techniques, including the challenges encountered. This approach is not meant to replace other techniques or be used in all patients. Instead, it adds to our arsenal for managing spine fusion.
2.Decompression Surgery versus Interspinous Devices for Lumbar Spinal Stenosis: A Systematic Review of the Literature
Jennifer TRAM ; Shanmukha SRINIVAS ; Arvin R. WALI ; Courtney S. LEWIS ; Martin H. PHAM
Asian Spine Journal 2020;14(4):526-542
In this retrospective review study, the authors systematically reviewed the literature to elucidate the efficacy and complications associated with decompression and interspinous devices (ISDs) used in surgeries for lumbar spinal stenosis (LSS). LSS is a debilitating condition that affects the lumbar spinal cord and spinal nerve roots. However, a comprehensive report on the relative efficacy and complication rate of ISDs as they compare to traditional decompression procedures is currently lacking. The PubMed database was queried to identify clinical studies that exclusively investigated decompression, those that exclusively investigated ISDs, and those that compared decompression with ISDs. Only prospective cohort studies, case series, and randomized controlled trials that evaluated outcomes using the Visual Analog Scale (VAS), Oswestry Disability Index, or Japanese Orthopedic Association scores were included. A random-effects model was established to assess the difference between preoperative and the 1–2-year postoperative VAS scores between ISD surgery and lumbar decompression. This study included 40 papers that matched our criteria. Twenty-five decompression-exclusive clinical trials with 3,386 patients and a mean age of 68.7 years (range, 31–88 years) reported a 2.2% incidence rate of dural tears and a 2.6% incidence rate of postoperative infections. Eight ISD-exclusive clinical trials with 1,496 patients and a mean age of 65.1 (range, 19–89 years) reported a 5.3% incidence rate of postoperative leg pain and a 3.7% incidence rate of spinous process fractures. Seven studies that compared ISDs and decompression in 624 patients found a reoperation rate of 8.3% in ISD patients vs. 3.9% in decompression patients; they also reported dural tears in 0.32% of ISD patients vs. 5.2% in decompression patients. A meta-analysis of the randomized controlled trials found that the differences in preoperative and postoperative VAS scores between the two groups were not significant. Both decompression and ISD interventions are unique surgical interventions with different therapeutic efficacies and complications. The collected studies do not consistently demonstrate superiority of either procedure over the other but understanding the differences between the two techniques can help tailor treatment regimens for patients with LSS.
3.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
4.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
5.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
6.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
7.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
8.Bisphosphonate's and Intermittent Parathyroid Hormone's Effect on Human Spinal Fusion: A Systematic Review of the Literature.
Michael A STONE ; Andre M JAKOI ; Justin A IORIO ; Martin H PHAM ; Neil N PATEL ; Patrick C HSIEH ; John C LIU ; Frank L ACOSTA ; Raymond HAH ; Jeffrey C WANG
Asian Spine Journal 2017;11(3):484-493
There has been a conscious effort to address osteoporosis in the aging population. As bisphosphonate and intermittent parathyroid hormone (PTH) therapy become more widely prescribed to treat osteoporosis, it is important to understand their effects on other physiologic processes, particularly the impact on spinal fusion. Despite early animal model studies and more recent clinical studies, the impact of these medications on spinal fusion is not fully understood. Previous animal studies suggest that bisphosphonate therapy resulted in inhibition of fusion mass with impeded maturity and an unknown effect on biomechanical strength. Prior animal studies demonstrate an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. The purpose of this study was to determine if bisphosphonates and intermittent PTH treatment have impact on human spinal fusion. A systematic review of the literature published between 1980 and 2015 was conducted using major electronic databases. Studies reporting outcomes of human subjects undergoing 1, 2, or 3-level spinal fusion while receiving bisphosphonates and/or intermittent PTH treatment were included. The results of relevant human studies were analyzed for consensus on the effects of these medications in regards to spinal fusion. There were nine human studies evaluating the impact of these medications on spinal fusion. Improved fusion rates were noted in patients receiving bisphosphonates compared to control groups, and greater fusion rates in patients receiving PTH compared to control groups. Prior studies involving animal models found an improved fusion rate and fusion mass microstructure with the use of intermittent PTH. No significant complications were demonstrated in any study included in the analysis. Bisphosphonate use in humans may not be a deterrent to spinal fusion. Intermittent parathyroid use has shown early promise to increase fusion mass in both animal and human studies but further studies are needed to support routine use.
Aging
;
Animals
;
Consensus
;
Diphosphonates
;
Humans*
;
Lumbar Vertebrae
;
Models, Animal
;
Osteoporosis
;
Parathyroid Hormone
;
Spinal Fusion*
9.The Clinical Correlations between Diabetes, Cigarette Smoking and Obesity on Intervertebral Degenerative Disc Disease of the Lumbar Spine.
Ande M JAKOI ; Gurpal PANNU ; Anthony D'ORO ; Zorica BUSER ; Martin H PHAM ; Neil N PATEL ; Patrick C HSIEH ; John C LIU ; Frank L ACOSTA ; Raymond HAH ; Jeffrey C WANG
Asian Spine Journal 2017;11(3):337-347
STUDY DESIGN: Retrospective analysis of a nationwide private insurance database. Chi-square analysis and linear regression models were utilized for outcome measures. PURPOSE: The purpose of this study was to investigate any relationship between lumbar degenerative disc disease, diabetes, obesity and smoking tobacco. OVERVIEW OF LITERATURE: Diabetes, obesity, and smoking tobacco are comorbid conditions known to individually have effect on degenerative disc disease. Most studies have only been on a small populous scale. No study has yet to investigate the combination of these conditions within a large patient cohort nor have they reviewed the combination of these conditions on degenerative disc disease. METHODS: A retrospective analysis of insurance billing codes within the nationwide Humana insurance database was performed, using PearlDiver software (PearlDiver, Inc., Fort Wayne, IN, USA), to identify trends among patients diagnosed with lumbar disc degenerative disease with and without the associated comorbidities of obesity, diabetes, and/or smoking tobacco. Patients billed for a comorbidity diagnosis on the same patient record as the lumbar disc degenerative disease diagnosis were compared over time to patients billed for lumbar disc degenerative disease without a comorbidity. There were no sources of funding for this manuscript and no conflicts of interest. RESULTS: The total number and prevalence of patients (per 10,000) within the database diagnosed with lumbar disc degenerative disease increased by 241.4% and 130.3%, respectively. The subsets of patients within this population who were concurrently diagnosed with either obesity, diabetes, tobacco use, or a combination thereof, was significantly higher than patients diagnosed with lumbar disc degenerative disease alone (p <0.05 for all). The number of patients diagnosed with lumbar disc degenerative disease and smoking rose significantly more than patients diagnosed with lumbar disc degenerative disease and either diabetes or obesity (p <0.05). The number of patients diagnosed with lumbar disc degenerative disease, smoking and obesity rose significantly more than the number of patients diagnosed with lumbar disc degenerative disease and any other comorbidity alone or combination of comorbidities (p <0.05). CONCLUSIONS: Diabetes, obesity and cigarette smoking each are significantly associated with an increased diagnosis of lumbar degenerative disc disease. The combination of smoking and obesity had a synergistic effect on increased rates of lumbar degenerative disc disease. Patient education and preventative care is a vital goal in prevention of degenerative disc disease within the general population.
Cohort Studies
;
Comorbidity
;
Diabetes Mellitus
;
Diagnosis
;
Financial Management
;
Humans
;
Insurance
;
Linear Models
;
Obesity*
;
Outcome Assessment (Health Care)
;
Patient Education as Topic
;
Prevalence
;
Retrospective Studies
;
Smoke
;
Smoking*
;
Spine*
;
Tobacco
;
Tobacco Products*
;
Tobacco Use
10.Endoscopic Anterior Lumbar Interbody Fusion: Systematic Review and Meta-Analysis
Nolan J. BROWN ; Zach PENNINGTON ; Cathleen C. KUO ; Alexander M. LOPEZ ; Bryce PICTON ; Sean SOLOMON ; Oanh T. NGUYEN ; Chenyi YANG ; Evelyne K. TANTRY ; Hania SHAHIN ; Julian GENDREAU ; Stephen ALBANO ; Martin H. PHAM ; Michael Y. OH
Asian Spine Journal 2023;17(6):1139-1154
Laparoscopic anterior lumbar interbody fusion (L-ALIF), which employs laparoscopic cameras to facilitate a less invasive approach, originally gained traction during the 1990s but has subsequently fallen out of favor. As the envelope for endoscopic approaches continues to be pushed, a recurrence of interest in laparoscopic and/or endoscopic anterior approaches seems possible. Therefore, evaluating the current evidence base in regard to this approach is of much clinical relevance. To this end, a systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the following keywords: “(laparoscopic OR endoscopic) AND (anterior AND lumbar).” Out of the 441 articles retrieved, 22 were selected for quantitative analysis. The primary outcome of interest was the radiographic fusion rate. The secondary outcome was the incidence of perioperative complications. Meta-analysis was performed using RStudio’s “metafor” package. Of the 1,079 included patients (mean age, 41.8±2.9 years), 481 were males (44.6%). The most common indication for L-ALIF surgery was degenerative disk disease (reported by 18 studies, 81.8%). The mean follow-up duration was 18.8±11.2 months (range, 6–43 months). The pooled fusion rate was 78.9% (95% confidence interval [CI], 68.9–90.4). Complications occurred in 19.2% (95% CI, 13.4–27.4) of L-ALIF cases. Additionally, 7.2% (95% CI, 4.6–11.4) of patients required conversion from L-ALIF to open surgery. Although L-ALIF does not appear to be supported by studies available in the literature, it is important to consider the context from which these results have been obtained. Even if these results are taken at face value, the failure of endoscopy to have a role in the ALIF approach does not mean that it should not be incorporated in posterior approaches.