1.INTRINSIC VENTRICULAR FUNCTION DOES NOT EXPLAIN REDUCED STROKE VOLUME AT REST AND DURING EXERCISE AT HIGH ALTITUDE
Mark. Stembridge ; P.N. Ainslie ; E.J. Stöhr ; M. Tymko ; T.A. Day ; A. Bakker ; M.G. Hughes ; K.J. Smith ; C.K. Willie, ; N.C.S. Lewis ; R. Shave
Japanese Journal of Physical Fitness and Sports Medicine 2015;64(1):112-112
2.A pre-conception cohort to study preeclampsia in China: Rationale, study design, and preliminary results.
Shiwu WEN ; Hongzhuan TAN ; Rihua XIE ; Graeme N SMITH ; Mark WALKER
Journal of Central South University(Medical Sciences) 2012;37(11):1081-1087
OBJECTIVE:
It is uncertain whether preeclampsia (PE) is caused by pre-existing factors or by pregnancy itself. We want to answer this important question in public health by conducting a large pre-conception cohort in China.
METHODS:
A prospective and pre-conception cohort study with a target recruitment of 5000 couples who plan to have a baby within 6 months was performed and their conception, delivery, and postpartum were followed up in Liuyang county, Hunan Province of P. R. China.
RESULTS:
A total of 1915 young couples have been recruited into this unique pre-conception cohort till now. In general, both systolic blood pressure and diastolic blood pressure decreased in early second trimester from pre-conception level but increased in third trimester and at delivery.
CONCLUSION
The proposed pre-conception cohort study will have important theoretical and practical implications on the prevention of PE and its associated cardiovascular disease risks.
Adult
;
Blood Pressure
;
physiology
;
China
;
Female
;
Humans
;
Pre-Eclampsia
;
etiology
;
physiopathology
;
prevention & control
;
Pregnancy
;
Pregnancy Complications, Cardiovascular
;
physiopathology
;
prevention & control
;
Prospective Studies
;
Young Adult
3.The Efficacy of Simultaneous Breast Reconstruction and Contralateral Balancing Procedures in Reducing the Need for Second Stage Operations.
Mark L SMITH ; Emily M CLARKE-PEARSON ; Michael VORNOVITSKY ; Joseph H DAYAN ; William SAMSON ; Mark R SULTAN
Archives of Plastic Surgery 2014;41(5):535-541
BACKGROUND: Patients having unilateral breast reconstruction often require a second stage procedure on the contralateral breast to improve symmetry. In order to provide immediate symmetry and minimize the frequency and extent of secondary procedures, we began performing simultaneous contralateral balancing operations at the time of initial reconstruction. This study examines the indications, safety, and efficacy of this approach. METHODS: One-hundred and two consecutive breast reconstructions with simultaneous contralateral balancing procedures were identified. Data included patient age, body mass index (BMI), type of reconstruction and balancing procedure, specimen weight, transfusion requirement, complications and additional surgery under anesthesia. Unpaired t-tests were used to compare BMI, specimen weight and need for non-autologous transfusion. RESULTS: Average patient age was 48 years. The majority had autologous tissue-only reconstructions (94%) and the rest prosthesis-based reconstructions (6%). Balancing procedures included reduction mammoplasty (50%), mastopexy (49%), and augmentation mammoplasty (1%). Average BMI was 27 and average reduction specimen was 340 grams. Non-autologous blood transfusion rate was 9%. There was no relationship between BMI or reduction specimen weight and need for transfusion. We performed secondary surgery in 24% of the autologous group and 100% of the prosthesis group. Revision rate for symmetry was 13% in the autologous group and 17% in the prosthesis group. CONCLUSIONS: Performing balancing at the time of breast reconstruction is safe and most effective in autologous reconstructions, where 87% did not require a second operation for symmetry.
Anesthesia
;
Blood Transfusion
;
Body Mass Index
;
Breast
;
Breast Neoplasms
;
Female
;
Free Tissue Flaps
;
Humans
;
Mammaplasty*
;
Prostheses and Implants
4.Strategies for Worksite Health Interventions to Employees with Elevated Risk of Chronic Diseases.
Lu MENG ; Marilyn B WOLFF ; Kelly A MATTICK ; David M DEJOY ; Mark G WILSON ; Matthew Lee SMITH
Safety and Health at Work 2017;8(2):117-129
Chronic disease rates have become more prevalent in the modern American workforce, which has negative implications for workplace productivity and healthcare costs. Offering workplace health interventions is recognized as an effective strategy to reduce chronic disease progression, absenteeism, and healthcare costs as well as improve population health. This review documents intervention and evaluation strategies used for health promotion programs delivered in workplaces. Using predetermined search terms in five online databases, we identified 1,131 published items from 1995 to 2014. Of these items, 27 peer-reviewed articles met the inclusion criteria; reporting data from completed United States-based workplace interventions that recruited at-risk employees based on their disease or disease-related risk factors. A content rubric was developed and used to catalogue these 27 published field studies. Selected workplace interventions targeted obesity (n=13), cardiovascular diseases (n=8), and diabetes (n=6). Intervention strategies included instructional education/counseling (n=20), workplace environmental change (n=6), physical activity (n=10), use of technology (n=10), and incentives (n=13). Self-reported data (n=21), anthropometric measurements (n=17), and laboratory tests (n=14) were used most often in studies with outcome evaluation. This is the first literature review to focus on interventions for employees with elevated risk for chronic diseases. The review has the potential to inform future workplace health interventions by presenting strategies related to implementation and evaluation strategies in workplace settings. These strategies can help determine optimal worksite health programs based on the unique characteristics of work settings and the health risk factors of their employee populations.
Absenteeism
;
Cardiovascular Diseases
;
Chronic Disease*
;
Efficiency
;
Health Care Costs
;
Health Promotion
;
Motivation
;
Motor Activity
;
Obesity
;
Occupational Health
;
Risk Factors
;
Workplace*
5. Melioidosis in India and Bangladesh: A review of case reports
Meghan TIPRE ; Tamika SMITH ; Mark LEADER ; Nalini SATHIAKUMAR ; Paul KINGSLEY
Asian Pacific Journal of Tropical Medicine 2018;11(5):320-329
Objective: To conduct an epidemiological and clinical review of published case reports of melioidosis from India and Bangladesh. Methods: Data from published case reports were abstracted and summarized. We further compared the clinical epidemiology of the melioidosis cases in India with case series from highly endemic areas in Northern Australia and Southeast Asia to elucidate any differences in presentations and risk factors between the regions. Results: We identified a total of 99 cases published between 1953 and June 2016, originating from India (n=85) or Bangladesh (n=14). Cases were predominantly male and ranged in age from 1 month to 90 years. Diabetes mellitus was the most common risk factor reported (58%). About 28% of the cases had history of exposure via high-risk occupations or exposure to contaminated water. The overall case fatality rate (CFR) was 26%. Factors influencing mortality included the occurrence of septic shock (CFR, 80%), environmental exposure (CFR, 39%), primary presentation of pneumonia (CFR, 38%), misdiagnosed and/or mistreated cases (CFR, 33%) or the presence of a risk factor (CFR, 29%). Because of the small number of cases in Bangladesh, pattern of clinical epidemiology is limited to India. Soft tissue abscess (37%) was the most common clinical presentation reported from India followed by pneumonia (24%) and osteomyelitis/septic arthritis (18%). Neurological melioidosis (n=10, 12%) presented as pyemic lesions of the brain or meninges. A few cases of prostatic abscess (n=4) in men and parotid abscess (n=4) were also noted. The above patterns were consistent with case series from Southeast Asia and Northern Australia for the most part, in terms of risk factors associated with infection and factors influencing mortality. Differences included clinical presentation of pneumonia which was notably lower than that reported in Southeast Asia and Northern Australia; a higher proportion of neurological and parotid abscess presentation; and a lower CFR compared to that reported in case series in Southeast Asia. About 39% of the cases were misdiagnosed and/or mistreated, suggesting underreporting and under estimation of the true disease burden. Conclusions: The concentration of melioidosis cases in southern and eastern states in India and in Bangladesh, which share climatic conditions and rice farming activities with known endemic areas in Southeast Asia, suggests an endemicity of melioidosis in this region. Thus, increased awareness among healthcare personnel, particularly among clinicians and nurses practicing in rural areas, and improved surveillance through case registries is essential to guide early diagnosis and prompt treatment.
6.Validating lactate dehydrogenase (LDH) as a component of the PLASMIC predictive tool (PLASMIC-LDH)
Christopher Chin KEONG LIAM ; Jim Yu-Hsiang TIAO ; Yee Yee YAP ; Yi Lin LEE ; Jameela SATHAR ; Simon MCRAE ; Amanda DAVIS ; Jennifer CURNOW ; Robert BIRD ; Philip CHOI ; Pantep ANGCHAISUKSIRI ; Sim Leng TIEN ; Joyce Ching MEI LAM ; Doyeun OH ; Jin Seok KIM ; Sung-Soo YOON ; Raymond Siu-Ming WONG ; Carolyn LAUREN ; Eileen Grace MERRIMAN ; Anoop ENJETI ; Mark SMITH ; Ross Ian BAKER
Blood Research 2023;58(1):36-41
Background:
The PLASMIC score is a convenient tool for predicting ADAMTS13 activity of <10%.Lactate dehydrogenase (LDH) is widely used as a marker of haemolysis in thrombotic thrombocytopenic purpura (TTP) monitoring, and could be used as a replacement marker for lysis. We aimed to validate the PLASMIC score in a multi-centre Asia Pacific region, and to explore whether LDH could be used as a replacement marker for lysis.
Methods:
Records of patients with thrombotic microangiopathy (TMA) were reviewed. Patients’ ADAMTS13 activity levels were obtained, along with clinical/laboratory findings relevant to the PLASMIC score. Both PLASMIC scores and PLASMIC-LDH scores, in which LDH replaced traditional lysis markers, were calculated. We generated a receiver operator characteristics (ROC) curve and compared the area under the curve values (AUC) to determine the predictive ability of each score.
Results:
46 patients fulfilled the inclusion criteria, of which 34 had ADAMTS13 activity levels of <10%. When the patients were divided into intermediate-to-high risk (scores 5‒7) and low risk (scores 0‒4), the PLASMIC score showed a sensitivity of 97.1% and specificity of 58.3%, with a positive predictive value (PPV) of 86.8% and negative predictive value (NPV) of 87.5%. The PLASMIC-LDH score had a sensitivity of 97.1% and specificity of 33.3%, with a PPV of 80.5% and NPV of 80.0%.
Conclusion
Our study validated the utility of the PLASMIC score, and demonstrated PLASMIC-LDH as a reasonable alternative in the absence of traditional lysis markers, to help identify high-risk patients for treatment via plasma exchange.
7.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
8.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
9.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.
10.Global, Regional, and National Trends in Liver Disease-Related Mortality Across 112 Countries From 1990 to 2021, With Projections to 2050:Comprehensive Analysis of the WHO Mortality Database
Jong Woo HAHN ; Selin WOO ; Jaeyu PARK ; Hyeri LEE ; Hyeon Jin KIM ; Jae Sung KO ; Jin Soo MOON ; Masoud RAHMATI ; Lee SMITH ; Jiseung KANG ; Damiano PIZZOL ; Mark A TULLY ; Elena DRAGIOTI ; Guillermo F. LÓPEZ SÁNCHEZ ; Kwanjoo LEE ; Yeonjung HA ; Jinseok LEE ; Hayeon LEE ; Sang Youl RHEE ; Yejun SON ; Soeun KIM ; Dong Keon YON
Journal of Korean Medical Science 2024;39(46):e292-
Background:
Liver disease causes over two million deaths annually worldwide, comprising approximately 4% of all global fatalities. We aimed to analyze liver disease-related mortality trends from 1990 to 2021 using the World Health Organization (WHO) Mortality Database and forecast global liver disease-related mortality rates up to 2050.
Methods:
This study examined age-standardized liver disease-related death rates from 1990 to 2021, employing data from the WHO Mortality Database across 112 countries across five continents. The rates over time were calculated using a locally weighted scatter plot smoother curve, with weights assigned based on the population of each country. Furthermore, this study projected liver disease-related mortality rates up to 2050 using a Bayesian age-periodcohort (BAPC) model. Additionally, a decomposition analysis was conducted to discern influencing factors such as population growth, aging, and epidemiological changes.
Results:
The estimated global age-standardized liver disease-related mortality rates surged significantly from 1990 to 2021 across 112 countries, rising from 103.4 deaths per 1,000,000 people (95% confidence interval [CI], 88.16, 118.74) in 1990 to 173.0 deaths per 1,000,000 people (95% CI, 155.15, 190.95) in 2021. This upward trend was particularly pronounced in low- and middle-income countries, in Africa, and in populations aged 65 years and older.Moreover, age-standardized liver disease-related mortality rates were correlated with a lower Human Development Index (P < 0.001) and sociodemographic index (P = 0.001). According to the BAPC model, the projected trend indicated a sustained and substantial decline in liver disease-related mortality rates, with an estimated decrease from 185.08 deaths per 1,000,000 people (95% CI, 179.79, 190.63) in 2021 to 156.29 (112.32, 214.77) in 2050. From 1990 to 2021, age-standardized liver disease-related deaths surged primarily due to epidemiological changes, whereas from 1990 to 2050, the impact of population aging and growth became the primary contributing factors to the overall increase.
Conclusion
Global age-standardized liver disease-related mortality has increased significantly and continues to emerge as a crucial global public health issue. Further investigation into liver disease-related mortality rates in Africa is needed, and updating policies is necessary to effectively manage the global burden of liver disease.