1.Maresin 1 alleviates neuroinflammation and cognitive decline in a mouse model of cecal ligation and puncture
Longyan LI ; Manyu XING ; Lu WANG ; Yixia ZHAO
Journal of Central South University(Medical Sciences) 2024;49(6):890-902
Objective:Inflammation in the central nervous system plays a crucial role in the occurrence and development of sepsis-associated encephalopathy.This study aims to explore the effects of maresin 1(MaR1),an anti-inflammatory and pro-resolving lipid mediator,on sepsis-induced neuroinflammation and cognitive impairment. Methods:Mice were randomly assigned to 4 groups:A sham group(sham operation+vehicle),a cecal ligation and puncture(CLP)group(CLP operation+vehicle),a MaR1-LD group(CLP operation+1 ng MaR1),and a MaR1-HD group(CLP operation+10 ng MaR1).MaR1 or vehicle was intraperitoneally administered starting 1 h before CLP operation,then every other day for 7 days.Survival rates were monitored,and serum inflammatory cytokines[tumor necrosis factor alpha(TNF-α),interleukin(IL)-1β,and IL-6]were measured 24 h after operation using enzyme-linked immunosorbent assay(ELISA).Cognitive function was assessed 7 days after operation using the Morris water maze(MWM)test and novel object recognition(NOR)task.The mRNA expression of TNF-α,IL-1β,IL-6,inducible nitric oxide synthase(iNOS),IL-4,IL-10,and arginase 1(Arg1)in cortical and hippocampal tissues was determined by real-time reverse transcription PCR(RT-PCR).Western blotting was used to determine the protein expression of iNOS,Arg1,signal transducer and activator of transcription 6(STAT6),peroxisome proliferator-activated receptor gamma(PPARγ),and phosphorylated STAT6(p-STAT6)in hippocampal tissue.Microglia activation was visualized via immunofluorescence.Mice were also treated with the PPARγ antagonist GW9662 to confirm the involvement of this pathway in MaR1's effects. Results:CLP increased serum levels of TNF-α,IL-1β,and IL-6,and reduced body weight and survival rates(all P<0.05).Both 1 ng and 10 ng doses of MaR1 significantly reduced serum TNF-α,IL-1β,and IL-6 levels,improved body weight,and increased survival rates(all P<0.05).No significant difference in efficacy was observed between the 2 doses(all P>0.05).MWM test and NOR task indicated that CLP impaired spatial learning,which MaR1 mitigated.However,GW9662 partially reversed MaR1's protective effects.Real-time RT-PCR results demonstrated that,compared to the sham group,mRNA expression of TNF-α,IL-1β,and iNOS significantly increased in hippocampal tissues following CLP(all P<0.05),while IL-4,IL-10,and Arg1 showed a slight decrease,though the differences were not statistically significant(all P>0.05).Compared to the CLP group,both 1 ng and 10 ng MaR1 decreased TNF-α,IL-1β,and iNOS mRNA expression in hippocampal tissues and increased IL-4,IL-10,and Arg1 mRNA expression(all P<0.05).Immunofluorescence results indicated a significant increase in Iba1-positive microglia in the hippocampus after CLP compared to the sham group(P<0.05).Administration of 1 ng and 10 ng MaR1 reduced the percentage area of Iba1-positive cells in the hippocampus compared to the CLP group(both P<0.05).Western blotting results showed that,compared to the CLP group,both 1 ng and 10 ng MaR1 down-regulated the iNOS expression,while up-regulated the expression of Arg1,PPARγ,and p-STAT6(all P<0.05).However,the inclusion of GW9662 counteracted the MaR1-induced upregulation of Arg1 and PPARγ compared to the MaR1-LD group(all P<0.05). Conclusion:MaR1 inhibits the classical activation of hippocampal microglia,promotes alternative activation,reduces sepsis-induced neuroinflammation,and improves cognitive decline.
2.Establishment and differential protein identification of two-dimensional gel electrophoresis for proteomics in the spinal cord of morphine-tolerant rats.
Liqiong HE ; Zongbin SONG ; Manyu XING ; Zhengyiqi LI ; Jing WU ; Meiling DENG ; Maoyu LI ; Qulian GUO ; Wangyuan ZOU
Journal of Central South University(Medical Sciences) 2019;44(4):392-398
To establish a two-dimensional gel electrophoresis (2-DE) map for comparative proteomic analysis of rat spinal cord with chronic morphine tolerance, and to detect differentially expression proteins that are associated with chronic morphine tolerance.
Methods: Sixteen male SD rats received the intrathecal catheterization operation and they were randomly divided into a morphine tolerance group (MT group, n=8) and a saline group (NS group, n=8). The lumbar enlargement segments of the MT group and the NS group spinal cord were harvested and proteins were separated by 2-DE. Differential proteome profiles were established and analyzed by means of immobilized pH gradient-based two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The 2-DE maps were visualized after coomassie blue staining and analyzed using PDQuest analysis software. Identification of differential protein spots was conducted by MALDI-TOF-MS, and the Mascot query software was used to search Swiss-Prot database for bioinformatics analysis. Western blotting was used to verify the expression of some differentially expressed proteins.
Results: A total of 1 000 spots were identified in 2-DE maps of rat spinal cord tissues from the MT group and the NS group, and 36 proteins were significantly differentially expressed in the MT group compared with the NS group. Identification was conducted by MALDI-TOF-MS and Swiss-Prot database through Mascot query software, and a total of 14 proteins were obtained. Among them, 2 protein spots were down-regulated in the MT group compared with that in the NS group, and 12 protein spots were up-regulated in the MT group compared with that in the NS group. Two kinds of proteins (NUDAA, ENOG) were verified by Western blotting and the results were consistent with proteomics data.
Conclusion: The optimized 2-DE profiles for the proteome of spinal cord tissue in rats with chronic morphine tolerance is established preliminarily, which showed that morphine tolerance can cause changes in the expression of various proteins in the spinal cord.
Animals
;
Electrophoresis, Gel, Two-Dimensional
;
Male
;
Morphine
;
Proteome
;
Proteomics
;
Rats
;
Rats, Sprague-Dawley
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
;
Spinal Cord