1.Effects of IL-12 DNA Vaccine on Reactivation of Mycobacterium tuberculosis in Cornell Model.
Bo Young JEON ; Manki SONG ; Seung Cheol KIM ; Young Cheol SUNG ; Joo Deuk KIM ; Sang Nae CHO
Journal of the Korean Society for Microbiology 2000;35(5):378-378
No Abstract Available.
DNA*
;
Interleukin-12*
;
Mycobacterium tuberculosis*
;
Mycobacterium*
2.Immunogenicity of a bivalent killed thimerosal-free oral cholera vaccine, Euvichol, in an animal model.
Eun Young LEE ; Sena LEE ; Semi RHO ; Jae Ouk KIM ; Seuk Keun CHOI ; Young Jin LEE ; Joo Young PARK ; Manki SONG ; Jae Seung YANG
Clinical and Experimental Vaccine Research 2018;7(2):104-110
PURPOSE: An oral cholera vaccine (OCV), Euvichol, with thimerosal (TM) as preservative, was prequalified by the World Health Organization (WHO) in 2015. In recent years, public health services and regulatory bodies recommended to eliminate TM in vaccines due to theoretical safety concerns. In this study, we examined whether TM-free Euvichol induces comparable immunogenicity to its TM-containing formulation in animal model. MATERIALS AND METHODS: To evaluate and compare the immunogenicity of the two variations of OCV, mice were immunized with TM-free or TM-containing Euvichol twice at 2-week interval by intranasal or oral route. One week after the last immunization, mice were challenged with Vibrio cholerae O1 and daily monitored to examine the protective immunity against cholera infection. In addition, serum samples were obtained from mice to measure vibriocidal activity and vaccine-specific IgG, IgM, and IgA antibodies using vibriocidal assay and enzyme-linked immunosorbent assay, respectively. RESULTS: No significant difference in immunogenicity, including vibriocidal activity and vaccine-specific IgG, IgM, and IgA in serum, was observed between mice groups administered with TM-free and -containing Euvichol, regardless of immunization route. However, intranasally immunized mice elicited higher levels of serum antibodies than those immunized via oral route. Moreover, intranasal immunization completely protected mice against V. cholerae challenge but not oral immunization. There was no significant difference in protection between two Euvichol variations. CONCLUSION: These results suggested that TM-free Euvichol could provide comparable immunogenicity to the WHO prequalified Euvichol containing TM as it was later confirmed in a clinical study. The pulmonary mouse cholera model can be considered useful to examine in vivo the potency of OCVs.
Animals*
;
Antibodies
;
Cholera Vaccines
;
Cholera*
;
Clinical Study
;
Enzyme-Linked Immunosorbent Assay
;
Immunization
;
Immunoglobulin A
;
Immunoglobulin G
;
Immunoglobulin M
;
Mice
;
Models, Animal*
;
Public Health
;
Thimerosal
;
Vaccines
;
Vibrio cholerae O1
;
World Health Organization
3.Laboratory information management system for COVID-19 non-clinical efficacy trial data
Suhyeon YOON ; Hyuna NOH ; Heejin JIN ; Sungyoung LEE ; Soyul HAN ; Sung-Hee KIM ; Jiseon KIM ; Jung Seon SEO ; Jeong Jin KIM ; In Ho PARK ; Jooyeon OH ; Joon-Yong BAE ; Gee Eun LEE ; Sun-Je WOO ; Sun-Min SEO ; Na-Won KIM ; Youn Woo LEE ; Hui Jeong JANG ; Seung-Min HONG ; Se-Hee AN ; Kwang-Soo LYOO ; Minjoo YEOM ; Hanbyeul LEE ; Bud JUNG ; Sun-Woo YOON ; Jung-Ah KANG ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Dain ON ; Soo-Yeon LIM ; Sol Pin KIM ; Ji Yun JANG ; Ho LEE ; Kyoungmi KIM ; Hyo-Jung LEE ; Hong Bin KIM ; Jun Won PARK ; Dae Gwin JEONG ; Daesub SONG ; Kang-Seuk CHOI ; Ho-Young LEE ; Yang-Kyu CHOI ; Jung-ah CHOI ; Manki SONG ; Man-Seong PARK ; Jun-Young SEO ; Ki Taek NAM ; Jeon-Soo SHIN ; Sungho WON ; Jun-Won YUN ; Je Kyung SEONG
Laboratory Animal Research 2022;38(2):119-127
Background:
As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research.
Results:
In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research.
Conclusions
This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.
4.Immune Cells Are DifferentiallyAffected by SARS-CoV-2 Viral Loads in K18-hACE2 Mice
Jung Ah KIM ; Sung-Hee KIM ; Jeong Jin KIM ; Hyuna NOH ; Su-bin LEE ; Haengdueng JEONG ; Jiseon KIM ; Donghun JEON ; Jung Seon SEO ; Dain ON ; Suhyeon YOON ; Sang Gyu LEE ; Youn Woo LEE ; Hui Jeong JANG ; In Ho PARK ; Jooyeon OH ; Sang-Hyuk SEOK ; Yu Jin LEE ; Seung-Min HONG ; Se-Hee AN ; Joon-Yong BAE ; Jung-ah CHOI ; Seo Yeon KIM ; Young Been KIM ; Ji-Yeon HWANG ; Hyo-Jung LEE ; Hong Bin KIM ; Dae Gwin JEONG ; Daesub SONG ; Manki SONG ; Man-Seong PARK ; Kang-Seuk CHOI ; Jun Won PARK ; Jun-Won YUN ; Jeon-Soo SHIN ; Ho-Young LEE ; Ho-Keun KWON ; Jun-Young SEO ; Ki Taek NAM ; Heon Yung GEE ; Je Kyung SEONG
Immune Network 2024;24(2):e7-
Viral load and the duration of viral shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are important determinants of the transmission of coronavirus disease 2019.In this study, we examined the effects of viral doses on the lung and spleen of K18-hACE2 transgenic mice by temporal histological and transcriptional analyses. Approximately, 1×105 plaque-forming units (PFU) of SARS-CoV-2 induced strong host responses in the lungs from 2 days post inoculation (dpi) which did not recover until the mice died, whereas responses to the virus were obvious at 5 days, recovering to the basal state by 14 dpi at 1×102 PFU. Further, flow cytometry showed that number of CD8+ T cells continuously increased in 1×102 PFU-virusinfected lungs from 2 dpi, but not in 1×105 PFU-virus-infected lungs. In spleens, responses to the virus were prominent from 2 dpi, and number of B cells was significantly decreased at 1×105PFU; however, 1×102 PFU of virus induced very weak responses from 2 dpi which recovered by 10 dpi. Although the defense responses returned to normal and the mice survived, lung histology showed evidence of fibrosis, suggesting sequelae of SARS-CoV-2 infection. Our findings indicate that specific effectors of the immune response in the lung and spleen were either increased or depleted in response to doses of SARS-CoV-2. This study demonstrated that the response of local and systemic immune effectors to a viral infection varies with viral dose, which either exacerbates the severity of the infection or accelerates its elimination.