1.Phenotypic and genetic analysis of acute megakaryoblastic leukemia in young children with WT1, MLL-PTD and EVI1 genes.
Liping ZHAO ; Xing CHEN ; Manjiang LI ; Huanliang DENG
Chinese Journal of Medical Genetics 2021;38(7):690-693
OBJECTIVE:
To explore the phenotypic and genetic characteristics of acute megakaryoblastic leukemia (AMKL) in young children accompany by WT1, MLL-PTD and EVI1, in order to improve the diagnosis level of AMKL.
METHODS:
EDTA-K
RESULTS:
White blood cell count was 12.3× 10
CONCLUSION
Acute megakaryocytic leukemia has unique and complex phenotypic and genetics characteristics.
Bone Marrow
;
Child
;
Child, Preschool
;
Chromosome Aberrations
;
Humans
;
Karyotyping
;
Leukemia, Megakaryoblastic, Acute/genetics*
;
MDS1 and EVI1 Complex Locus Protein
;
Megakaryocytes
;
Oncogene Proteins, Fusion
;
WT1 Proteins
2.Methcathinone Increases Visually-evoked Neuronal Activity and Enhances Sensory Processing Efficiency in Mice.
Jun ZHOU ; Wen DENG ; Chen CHEN ; Junya KANG ; Xiaodan YANG ; Zhaojuan DOU ; Jiancheng WU ; Quancong LI ; Man JIANG ; Man LIANG ; Yunyun HAN
Neuroscience Bulletin 2023;39(4):602-616
Methcathinone (MCAT) belongs to the designer drugs called synthetic cathinones, which are abused worldwide for recreational purposes. It has strong stimulant effects, including enhanced euphoria, sensation, alertness, and empathy. However, little is known about how MCAT modulates neuronal activity in vivo. Here, we evaluated the effect of MCAT on neuronal activity with a series of functional approaches. C-Fos immunostaining showed that MCAT increased the number of activated neurons by 6-fold, especially in sensory and motor cortices, striatum, and midbrain motor nuclei. In vivo single-unit recording and two-photon Ca2+ imaging revealed that a large proportion of neurons increased spiking activity upon MCAT administration. Notably, MCAT induced a strong de-correlation of population activity and increased trial-to-trial reliability, specifically during a natural movie stimulus. It improved the information-processing efficiency by enhancing the single-neuron coding capacity, suggesting a cortical network mechanism of the enhanced perception produced by psychoactive stimulants.
Mice
;
Animals
;
Reproducibility of Results
;
Neurons
;
Sensation
;
Perception