1.Chronic obstructive pulmonary disease severity in middle-aged and older men with steoporosis associates with decreased bone formation
Manabu TSUKAMOTO ; Toshiharu MORI ; Eiichiro NAKAMURA ; Yasuaki OKADA ; Hokuto FUKUDA ; Yoshiaki YAMANAKA ; Ken SABANAI ; Ke-Yong WANG ; Takeshi HANAGIRI ; Satoshi KUBOI ; Kazuhiro YATERA ; Akinori SAKAI
Osteoporosis and Sarcopenia 2020;6(4):179-187
Objectives:
Chronic obstructive pulmonary disease (COPD) is a risk factor for osteoporosis. Nevertheless, much remains unclear regarding the bone metabolism dynamics associated with COPD. The present study focuses on the associations between the COPD severity and serum bone metabolism biomarkers.
Methods:
We enrolled 40 patients who visited the orthopedics departments at our institutions and underwent dual-energy X-ray absorptiometry between September 2015 and December 2017. Only male osteoporosis patients over 45 years of age were included, and 5 patients were excluded due to disease or use of internal medicines affecting bone metabolism. All subjects underwent lung function testing, spine radiography, and blood tests. We measured percent forced expiratory volume in 1 second (%FEV1), which reflects COPD severity, and we examined the relationships between %FEV1and serum levels of bone metabolism biomarkers.
Results:
All subjects were diagnosed with osteoporosis based on T-scores. %FEV1 correlated with body weight, body mass index (BMI), and Z-score/T-scores. %FEV1 moderately correlated with serum levels of alkaline phosphatase (ALP), procollagen type 1 N-terminal propeptide (P1NP), and tartrate-resistant acid phosphatase 5b in the partial correlation analysis adjusted for BMI or T-score in the lumbar vertebrae. We performed a hierarchical multiple regression analysis to identify that serum ALP and P1NP were the independent explanatory variables to %FEV1 independent of other factors.
Conclusions
The data suggest that the COPD severity in middle-aged and older men with osteoporosis associates with decreased bone formation. COPD patients may exhibit bone metabolism dynamics characterized by low bone turnover with osteogenesis dysfunction as COPD becomes severe.
2.Differences in the effects of BMI on bone microstructure between loaded and unloaded bones assessed by HR-pQCT in Japanese postmenopausal women
Norifumi FUJII ; Manabu TSUKAMOTO ; Nobukazu OKIMOTO ; Miyuki MORI ; Yoshiaki IKEJIRI ; Toru YOSHIOKA ; Makoto KAWASAKI ; Nobuhiro KITO ; Junya OZAWA ; Ryoichi NAKAMURA ; Shogo TAKANO ; Saeko FUJIWARA
Osteoporosis and Sarcopenia 2021;7(2):54-62
Objectives:
The relationship between weight-related load and bone mineral density (BMD)/bone microstructure under normal load conditions using high-resolution peripheral quantitative computed tomography (HR-pQCT) remains unconfirmed. The study aims to investigate the differences in effect of body mass index (BMI) on BMD/bone microstructure of loaded and unloaded bones, respectively, in Japanese postmenopausal women.
Methods:
Fifty-seven postmenopausal women underwent HR-pQCT on the tibia and radius. Correlation analysis, principal component (PC) analysis, and hierarchical multiple regression were performed to examine the relationship between BMI and HR-pQCT parameters.
Results:
Several microstructural parameters of the tibia and radius correlated with BMI through a simple correlation analysis, and these relationships remained unchanged even with an age-adjusted partial correlation analysis. PC analysis was conducted using seven bone microstructure parameters. The first PC (PC1) reflected all parameters of trabecular and cortical bone microstructures, except for cortical porosity, whereas the second PC (PC2) reflected only cortical bone microstructure. Hierarchical multiple regression analysis indicated that BMI was more strongly related to BMD/bone microstructure in the tibia than in the radius. Furthermore, BMI was associated with trabecular/cortical BMD, and PC1 (not PC2) of the tibia and radius. Thus, BMI was strongly related to the trabecular bone microstructure rather than the cortical bone microstructure.
Conclusions
Our data confirmed that BMI is associated with volumetric BMD and trabecular bone microstructure parameters in the tibia and radius. However, although BMI may be more related to HRpQCT parameters in the tibia than in the radius, the magnitude of association is modest.
3.An Approach to Delivering Prophylactic Rehabilitation Interventions to Individuals in a Rural Area
Yusuke KATO ; Manabu HORI ; Nobuyuki HAYASHI ; Hideto TSUKAMOTO
Journal of the Japanese Association of Rural Medicine 2020;68(5):623-
We started a prophylactic rehabilitation class from fiscal year 2016 and 1 year later we identified 4 problems, namely, a small number of participants (mean, 4.6), a small male population (ratio of 1 male to 9 females), no follow up because only 1 session was given per area, and a low home exercise rate (42.5%). For the class in fiscal year 2017, discussions were held with the comprehensive regional support center. Accordingly, relevant information was disseminated via public relations magazines, neighborhood circulars, and the local government to address the problems with the number of participants and sex ratio, and a series of 4 sessions were held per area to address the problems with the lack of follow-up and continuation of home exercise. Objective assessments (grip strength, one-leg standing, and knee extension strength) were included in the physical assessment. Through these measures, based on questionnaire results, we found that there was an increase in the number of participants and that more participants continued the exercise at home after the class was increased.
4.Chronic obstructive pulmonary disease severity in middle-aged and older men with steoporosis associates with decreased bone formation
Manabu TSUKAMOTO ; Toshiharu MORI ; Eiichiro NAKAMURA ; Yasuaki OKADA ; Hokuto FUKUDA ; Yoshiaki YAMANAKA ; Ken SABANAI ; Ke-Yong WANG ; Takeshi HANAGIRI ; Satoshi KUBOI ; Kazuhiro YATERA ; Akinori SAKAI
Osteoporosis and Sarcopenia 2020;6(4):179-187
Objectives:
Chronic obstructive pulmonary disease (COPD) is a risk factor for osteoporosis. Nevertheless, much remains unclear regarding the bone metabolism dynamics associated with COPD. The present study focuses on the associations between the COPD severity and serum bone metabolism biomarkers.
Methods:
We enrolled 40 patients who visited the orthopedics departments at our institutions and underwent dual-energy X-ray absorptiometry between September 2015 and December 2017. Only male osteoporosis patients over 45 years of age were included, and 5 patients were excluded due to disease or use of internal medicines affecting bone metabolism. All subjects underwent lung function testing, spine radiography, and blood tests. We measured percent forced expiratory volume in 1 second (%FEV1), which reflects COPD severity, and we examined the relationships between %FEV1and serum levels of bone metabolism biomarkers.
Results:
All subjects were diagnosed with osteoporosis based on T-scores. %FEV1 correlated with body weight, body mass index (BMI), and Z-score/T-scores. %FEV1 moderately correlated with serum levels of alkaline phosphatase (ALP), procollagen type 1 N-terminal propeptide (P1NP), and tartrate-resistant acid phosphatase 5b in the partial correlation analysis adjusted for BMI or T-score in the lumbar vertebrae. We performed a hierarchical multiple regression analysis to identify that serum ALP and P1NP were the independent explanatory variables to %FEV1 independent of other factors.
Conclusions
The data suggest that the COPD severity in middle-aged and older men with osteoporosis associates with decreased bone formation. COPD patients may exhibit bone metabolism dynamics characterized by low bone turnover with osteogenesis dysfunction as COPD becomes severe.
5.Differences in the effects of BMI on bone microstructure between loaded and unloaded bones assessed by HR-pQCT in Japanese postmenopausal women
Norifumi FUJII ; Manabu TSUKAMOTO ; Nobukazu OKIMOTO ; Miyuki MORI ; Yoshiaki IKEJIRI ; Toru YOSHIOKA ; Makoto KAWASAKI ; Nobuhiro KITO ; Junya OZAWA ; Ryoichi NAKAMURA ; Shogo TAKANO ; Saeko FUJIWARA
Osteoporosis and Sarcopenia 2021;7(2):54-62
Objectives:
The relationship between weight-related load and bone mineral density (BMD)/bone microstructure under normal load conditions using high-resolution peripheral quantitative computed tomography (HR-pQCT) remains unconfirmed. The study aims to investigate the differences in effect of body mass index (BMI) on BMD/bone microstructure of loaded and unloaded bones, respectively, in Japanese postmenopausal women.
Methods:
Fifty-seven postmenopausal women underwent HR-pQCT on the tibia and radius. Correlation analysis, principal component (PC) analysis, and hierarchical multiple regression were performed to examine the relationship between BMI and HR-pQCT parameters.
Results:
Several microstructural parameters of the tibia and radius correlated with BMI through a simple correlation analysis, and these relationships remained unchanged even with an age-adjusted partial correlation analysis. PC analysis was conducted using seven bone microstructure parameters. The first PC (PC1) reflected all parameters of trabecular and cortical bone microstructures, except for cortical porosity, whereas the second PC (PC2) reflected only cortical bone microstructure. Hierarchical multiple regression analysis indicated that BMI was more strongly related to BMD/bone microstructure in the tibia than in the radius. Furthermore, BMI was associated with trabecular/cortical BMD, and PC1 (not PC2) of the tibia and radius. Thus, BMI was strongly related to the trabecular bone microstructure rather than the cortical bone microstructure.
Conclusions
Our data confirmed that BMI is associated with volumetric BMD and trabecular bone microstructure parameters in the tibia and radius. However, although BMI may be more related to HRpQCT parameters in the tibia than in the radius, the magnitude of association is modest.
6.Daily activity relates to not only femoral bone mineral density, but also hip structural analysis parameters: A cross-sectional observational study
Norifumi FUJII ; Nobukazu OKIMOTO ; Manabu TSUKAMOTO ; Norimitsu FUJII ; Kei ASANO ; Yoshiaki IKEJIRI ; Toru YOSHIOKA ; Takafumi TAJIMA ; Yoshiaki YAMANAKA ; Yukichi ZENKE ; Makoto KAWASAKI ; Junya OZAWA ; Takuya UMEHARA ; Shogo TAKANO ; Hideaki MURATA ; Nobuhiro KITO
Osteoporosis and Sarcopenia 2021;7(4):127-133
Objectives:
Physical activity to maintain bone mass and strength is important for hip fracture prevention. We aim to investigate the relationship between physical performance/activity status and bone mineral density (BMD)/hip structural analysis (HSA) parameters among postmenopausal women in Japan.
Methods:
Sixty-two postmenopausal women diagnosed with osteoporosis (mean age: 72.61 ± 7.43 years) were enrolled in this cross-sectional observational study. They were evaluated for BMD and HSA in the proximal femur by dual-energy X-ray absorptiometry and underwent several physical performance tests, the Geriatric Locomotive Function Scale of 25 questions (GLFS-25). Principal component analysis (PCA) was used to summarize data on the BMD/HSA parameters. Partial correlation analysis, multiple regression analysis, and structural equation modeling (SEM) were performed to investigate the relationship between physical performance/activity status and BMD/HSA parameters of the proximal femur.
Results:
In a partial correlation analysis adjusted for age and body mass index (BMI), GLFS-25 scores were correlated with HSA parameter (|r| = 0.260–0.396, P < 0.05). Principal component 1 (PC1) calculated by PCA was interpreted as more reflective of bone strength based on the value of BMD/HSA parameters. The SEM results showed that the model created by the 3 questions (Q13, brisk walking; Q15, keep walking without rest; Q20, load-bearing tasks and housework) of the GLFS-25 had the best fit and was associated with the PC1 score (β = −0.444, P = 0.001).
Conclusions
The GLFS-25 score was associated with the BMD/HSA parameter, which may reflect the bone strength of the proximal femur as calculated by PCA.