1.Estimation of Apple Intake for the Exposure Assessment of Residual Chemicals Using Korea National Health and Nutrition Examination Survey Database.
Bumsik KIM ; Min Seok BAEK ; Yongmin LEE ; Jean Kyung PAIK ; Moon Ik CHANG ; Gyu Seek RHEE ; Sanghoon KO
Clinical Nutrition Research 2016;5(2):96-101
The aims of this study were to develop strategies and algorithms of calculating food commodity intake suitable for exposure assessment of residual chemicals by using the food intake database of Korea National Health and Nutrition Examination Survey (KNHANES). In this study, apples and their processed food products were chosen as a model food for accurate calculation of food commodity intakes uthrough the recently developed Korea food commodity intake calculation (KFCIC) software. The average daily intakes of total apples in Korea Health Statistics were 29.60 g in 2008, 32.40 g in 2009, 34.30 g in 2010, 28.10 g in 2011, and 24.60 g in 2012. The average daily intakes of apples by KFCIC software was 2.65 g higher than that by Korea Health Statistics. The food intake data in Korea Health Statistics might have less reflected the intake of apples from mixed and processed foods than KFCIC software has. These results can affect outcome of risk assessment for residual chemicals in foods. Therefore, the accurate estimation of the average daily intake of food commodities is very important, and more data for food intakes and recipes have to be applied to improve the quality of data. Nevertheless, this study can contribute to the predictive estimation of exposure to possible residual chemicals and subsequent analysis for their potential risks.
Eating
;
Korea*
;
Malus
;
Nutrition Surveys*
;
Risk Assessment
2.Chloroplast genome in Malus floribunda Siebold.
Xun WANG ; Ziquan FENG ; Daru WANG ; Yuepeng HAN ; Xiaofei WANG ; Xiang SHEN ; Chunxiang YOU
Chinese Journal of Biotechnology 2022;38(10):3713-3727
Malus floribunda Siebold. (Malus) is widely cultivated all over the world, which is of high ornamental value and breeding significance. Comparative analysis of the chloroplast genome can help enrich the phylogenetic relationship and facilitate germplasm utilization of Malus. Based on the whole genome sequencing data, a complete chloroplast genome (M. floribunda) with tetrad structure was assembled. The chloroplast genome (160 037 bp) was composed of a large single-copy (LSC) region (88 142 bp), inverted repeat (IR) B (26 353 bp), a small single-copy (SSC) region (19 189 bp), and IRA (26 353 bp). A total of 111 genes were annotated: 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. In addition, a large number of repeat sequences were identified in the genome, which was slightly different from that of M. sieboldii and M. toringoides. As for the relative synonymous codon usage, 30 high-frequency codons were found, and the codons tended to end with A/T. The results of interspecific sequence alignment and boundary analysis suggested the sequence variation of the LSC region was large, and the expansion and contraction of the SC region and IR region of the eight Malus species were generally similar. According to the phylogenetic analysis of chloroplast genome sequences, M. floribunda, M. hupehensis, and M. toringoides were grouped into one clade. The findings in this study can provide data support for the development of genetic markers and utilization of germplasm resources in the future.
Genome, Chloroplast
;
Malus
;
Phylogeny
;
Plant Breeding
;
Codon
3.Identification and expression analysis of apple PDHB-1 gene family.
Jinghua YANG ; Ju GAO ; Wenfang LI ; Ji LIU ; Jiaxing HUO ; Zhenshuo REN ; Long LI ; Baihong CHEN ; Juan MAO ; Zonghuan MA
Chinese Journal of Biotechnology 2023;39(12):4965-4981
Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the β-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.
Malus/metabolism*
;
Fruit/genetics*
;
Protein Structure, Secondary
4.Isolation, identification and bioactivity of endophytic fungi from medicinal plant Malus sieboldii.
China Journal of Chinese Materia Medica 2012;37(5):564-568
OBJECTIVETo isolate and identify endophytic fungi from Malus sieboldii, and detect cytotoxicity, protease inhibition and antifungal activities of their crude extracts.
METHODThe fungi were identified with the aid of morphology or Internal Transcribed Spacer (ITS) rDNA molecular methods. Fungal activities were tested by cylinder-plate, MTT and BRpNA methods, respectively.
RESULTA total of 217 endophytic fungi were isolated from M. sieboldii. Of the 22 taxa obtained, non-sporulating, Alternaria, Colletotrichum, Aspergillu, Fusarlum, Gliocladium and Cunninghamella were dominant communities. The result of the bioactivity test showed that 30 endophytic fungi displayed inhibition against at least one pathogenic fungus, and 3 and 4 showed cytotoxicity and protease inhibition, respectively.
CONCLUSIONM. sieboldii should be a potential source of bioactive endophytic fungi.
Endophytes ; isolation & purification ; physiology ; Fungi ; isolation & purification ; physiology ; Malus ; microbiology
5.Clinical Effectiveness of Regular Use of Unripe Apple Mask Pack on Skin Status of Middle-aged Women.
Mi Young KIM ; Kyung Dong CHO ; Eun Jin KIM ; Sang Yoon CHOI ; Sungsoo KIM ; Chan Kyu HAN ; Bog Hieu LEE
The Korean Journal of Nutrition 2010;43(5):453-462
The effects of unripe apple mask pack made from unripe apple extracts on the skin status of middle-aged women for 4 weeks were investigated. The subjects were divided into three groups: placebo mask pack as the control (PM, n = 8), apple mask pack (AM, n = 16), and apple mask pack + apple intake (AAM, n = 12). The study included a survey questionnaire, and evaluations of nutrients intakes and of skin status. Skin status was measured by Aramo-TS. After 4 weeks, facial moisture, elasticity, evenness, and wrinkle level were improved in AM and AAM. The facial moisture level (AM: +3.13 +/- 2.73, AAM: +2.25 +/- 2.93) and elasticity level (AM: +5.81 +/- 8.27, AAM: +5.50 +/- 6.13) of AM (p < 0.001) and AAM (p < 0.05) were increased. The facial evenness level (AM: -5.25 +/- 8.13, AAM: -9.17 +/- 4.26) and wrinkle level (AM: -10.88 +/- 11.74, AAM: -17.83 +/- 12.22) were significantly decreased. AAM was more effective in improving skin elasticity, evenness, and wrinkle. The skin status of PM was not changed. While the macronutrient intakes of all the subjects were not different before and after the study, the daily intakes of some vitamins (vitamins B6, C, and E and folic acid) during the study were significantly increased in AAM. These findings suggested that regular use of apple mask pack was effective in improving overall skin status. Furthermore, the consumption of apples with mask pack application was much better in improving skin status.
Elasticity
;
Female
;
Humans
;
Malus
;
Masks
;
Surveys and Questionnaires
;
Skin
;
Vitamins
6.Identification and expression analysis of citrate synthase 3 gene family members in apple.
Xinrui LI ; Wenfang LI ; Jiaxing HUO ; Long LI ; Baihong CHEN ; Zhigang GUO ; Zonghuan MA
Chinese Journal of Biotechnology 2024;40(1):137-149
As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly α-helix, followed by random curling, and the proportion of β-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3 > MdCS3.2 > MdCS3.1 > MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of 'Chengji No. 1' with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of 'Asda' with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.
Citric Acid
;
Malus/genetics*
;
Citrate (si)-Synthase
;
Phylogeny
;
Citrates
7.Design and preparation of the multimeric self-cleavable hammerhead ribozyme targeting apple scar skid viroid and its activity detection in vitro.
Jie-Lin SUN ; Chao-Chun ZHANG ; Li ZHOU ; Xi-Cai YANG
Chinese Journal of Biotechnology 2002;18(5):588-592
A self-cleaving hammerhead ribozyme gene containing a 14nt target sequence of ASSVd at the 3' end of hammerhead ribozyme was synthesized, amplified and cloned at the Xho I-Hind III site of pGEM7Zf(+). The ends produced by Xho I or Sal I can link together, thus the recognition sites of both enzymes vanish and can't be cut by either one. We used this property to get the recombinant plasmid bearing 2, 4, 6, 8, 10 and 12 copies of self-cleavable ribozyme respectively after successively sub-cloning five times. Linearized recombinat plasmid model catalyzed by T7 RNA polymerase was transcribed in vitro. The multimeric ribozyme molecules efficiently self-cleaved via cis-acting to release many ribozyme molecules It indicates that the concentration of ribozyme transcripts has been enhanced during transcription. Trans-cleavage reaction was carried out by incubating monomeric and multimeric ribozymes with same mol concentration and 32P labeled target ASSVd. Both ribozymes and target transcripts were mixed in 1:1 ratio. Autoradiograms showed the transcripts of multimeric ribozyme were substantially more effective against the ASSVd target RNA than the monomeric ribozymes. We confer that the multimeric self-clevable ribozyme is likely to provide more valuable application in vivo.
Malus
;
virology
;
RNA, Catalytic
;
chemistry
;
genetics
;
metabolism
;
RNA, Viral
;
metabolism
;
Viroids
;
metabolism
8.Clinical Characteristics of Oral Allergy Syndrome in Children with Atopic Dermatitis and Birch Sensitization: a Single Center Study.
Kang In KIM ; Bomi LEE ; Taek Ki MIN ; Jeongho LEE ; Bok Yang PYUN ; You Hoon JEON
Journal of Korean Medical Science 2019;34(2):e11-
BACKGROUND: Oral allergy syndrome (OAS) is an immunoglobulin E (IgE)-mediated hypersensitivity that occurs frequently in older children with pollen sensitization. This study focused on the clinical characteristics of OAS in children with atopic dermatitis (AD) and birch sensitization. METHOD: s: A total of 186 patients aged 2–18 years with AD and birch sensitization were enrolled in this study between January 2016 and March 2017. Their levels of serum total IgE and birch- and ragweed-specific IgE (sIgE) were measured using ImmunoCAP (Thermo Fisher Scientific, Uppsala, Sweden). Information regarding causative foods and symptoms were obtained via interviews. The patients were divided into 3 groups according to their ages (group 1, 2–6 years; group 2, 7–12 years; and group 3, 13–18 years). RESULTS: Eighty-one of the 186 (43.5%) children with AD who were sensitized to birch pollen were diagnosed as having OAS. The prevalence of OAS in group 1 (the children who had AD and birch sensitization aged 2–6 years) was 36.6%. A greater predominance of men was noted in the non-OAS group (77.1%) compared to the OAS group (60.5%). Apples were the most common causative food in group 2 and 3 while kiwis were the most common cause of OAS in group 1. There was a statistically significant correlation between birch-sIgE levels and the prevalence of OAS (P = 0.000). The cut-off value was 6.77 kUA/L with 55.6% sensitivity and 79.0% specificity (area under the curve 0.653). CONCLUSION: In our study, the prevalence of OAS in children with AD and birch sensitization was 43.5%. Even in the preschool age group, the prevalence of OAS was considerable. Patients with high levels of birch-sIgE were more likely to have OAS. Clinicians should therefore be vigilant about OAS in patients with a high degree of sensitization to birch pollen and even young children if they have birch sensitization.
Betula*
;
Child*
;
Dermatitis, Atopic*
;
Humans
;
Hypersensitivity*
;
Immunoglobulin E
;
Immunoglobulins
;
Male
;
Malus
;
Methods
;
Pollen
;
Prevalence
;
Sensitivity and Specificity
9.Analysis of apple postharment damage under high CO₂ concentration by transcriptome combined with metabolome.
Xiaoyan XU ; Gangshuai LIU ; Hongli LI ; Huiqin TIAN ; Daqi FU
Chinese Journal of Biotechnology 2021;37(8):2856-2869
The environmental gas concentration affects the storage period and quality of fruits and vegetables. High concentration CO₂ treating for a long time will cause damage to fruits, However, the specific molecular mechanism is unclear. To analyze the mechanism of CO₂ injury in apple, high-throughput sequencing technology of Illumina Hiseq 4000 and non-targeted metabolism technology were used to analyze the transcriptome sequencing and metabolomics analysis of browning flesh tissue of damage fruit and normal pulp tissue of the control group. A total of 6 332 differentially expressed genes were obtained, including 4 187 up-regulated genes and 2 145 down regulated genes. Functional analysis of the differentially expressed genes confirmed that the occurrence of CO₂ injury in apple was related to redox process, lipid metabolism, hormone signal transduction process and energy metabolism process. Twenty candidate browning genes were successfully screened, among which grxcr1 (md14g1137800) and gpx (md06g1081300) participated in the reactive oxygen species scavenging process, and pld1_ 2 (md15g1125000) and plcd (md07g1221900) participated in phospholipid acid synthesis and affected membrane metabolism. mdh1 (md05g1238800) participated in TCA cycle and affected energy metabolism. A total of 77 differential metabolites were obtained by metabolomic analysis, mainly organic acids, lipids, sugars and polyketones, including 35 metabolites related to browning. The metabolism of flavonoids was involved in the browning process of apple. Compared with the control tissue, the content of flavonoids such as catechin and quercetin decreased significantly in the damaged apple tissue, the antioxidant capacity of cells decreased, the redox state was unbalanced, and the cell structure was destroyed, resulting in browning. The results of this study further enrich the theoretical basis of CO₂ damage, and provide reference for the practical application of high concentration CO₂ preservation technology.
Carbon Dioxide
;
Fruit
;
Gene Expression Regulation, Plant
;
Malus/genetics*
;
Metabolome
;
Transcriptome
10.Genome-wide identification and effect of MdPEPC family genes during axillary bud outgrowth in apple (Malus domestica Borkh.).
Jiuyang LI ; Congjian SHI ; Yashuo SUN ; Caizhen GAO ; Yaohui ZHANG ; Ming TAN ; Bowen LIANG
Chinese Journal of Biotechnology 2022;38(10):3728-3739
The PEPC family proteins are ubiquitous in various plants and play an important role in the process of photosynthetic carbon assimilation and have many non-photosynthetic biological functions. However, PEPC genes have not been reported in apple. In this study, the members of apple MdPEPC family were identified based on the new apple genome data by bioinformatics analysis, and their expression patterns in different tissues and the apple axillary bud transcriptome treated by decapitation and TDZ (cytokinin) were analyzed in order to explore the role of MdPEPC genes in apple axillary bud outgrowth. The results showed that 6 MdPEPC family members were identified in apple, which distributed on 6 different chromosomes, and had similar physicochemical characteristics. Phylogenetic tree and sequence alignment analysis showed that the MdPEPC could be divided into two subgroups (Group Ⅰ and Group Ⅱ), in which four members in MdPEPC family were clustered into Group Ⅰ, belonging to plant-type PEPCs. However, MdPEPC4 and MdPEPC5 were clustered into Group Ⅱ with AtPPC4, belonging to bacterial-type PEPCs. There were 7 pairs of fragments repeats among MdPEPC members, but no tandem repeats existed. The promoter cis-acting element analysis showed that MdPEPC genes were not only affected by light and stress, but also regulated by multiple hormones. The expression profiles showed that all MdPEPCs except MdPEPC4 and MdPEPC5 were expressed in different apple tissues. Transcriptome data analysis showed that the expression levels of MdPEPC1 and MdPEPC3 were up-regulated after decapitation and TDZ treatment, whereas MdPEPC2 was significantly down-regulated at 48 h after treatments. In conclusion, MdPEPC1, MdPEPC2 and MdPEPC3 were selected as the candidate genes involved in axillary bud outgrowth regulation for further study.
Malus/metabolism*
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Decapitation
;
Family
;
Plant Proteins/metabolism*