1.Sequence and phylogenetic analysis of the non-structural 3A and 3B protein-coding regions of foot-and-mouth disease virus subtype A Iran 05.
Saber JELOKHANI-NIARAKI ; Majid ESMAELIZAD ; Morteza DALIRI ; Rasoul VAEZ-TORSHIZI ; Morteza KAMALZADEH ; Mohsen LOTFI
Journal of Veterinary Science 2010;11(3):243-247
The A Iran 05 foot-and-mouth disease virus (FMDV) subtype was detected in Iran during 2005 and has proven to be highly virulent. This study was undertaken to focus on molecular and phylogenetic analysis of 3A and 3B coding-regions in the A Iran 05 field isolate. To assess the genetic relatedness of A Iran 05 isolate the nucleotide and predicted amino acid sequences of the 3AB region of type A FMDV isolates were compared with twenty previously described type A FMDV isolates. The phylogenetic tree based on the 672 bp 3AB gene sequences of type A FMDV from thirteen different locations clustered them into five distinct lineages. The A Iran 05 isolate clustered in lineage A along with four type A variants and was closely matched with viruses isolated in Turkey and Pakistan during 2005~2006. The number of protein sequence differences exhibited by each of the isolates revealed that A Iran 05 isolate contains three amino acid substitutions at positions 47 and 119 of 3A and 27 of the 3B coding region. The nucleotide identity between A Iran 05 and the other four isolates of lineage A was estimated to be 98%.
Amino Acid Sequence
;
Base Sequence
;
Cluster Analysis
;
DNA Primers/genetics
;
Foot-and-Mouth Disease Virus/*genetics
;
Iran
;
Molecular Sequence Data
;
*Phylogeny
;
Reverse Transcriptase Polymerase Chain Reaction
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Sequence Homology
;
Species Specificity
;
Viral Nonstructural Proteins/*genetics
2.Molecular characterization of a 13-amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.
Majid ESMAELIZAD ; Saber JELOKHANI-NIARAKI ; Khadije HASHEMNEJAD ; Morteza KAMALZADEH ; Mohsen LOTFI
Journal of Veterinary Science 2011;12(4):363-371
The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26-->Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.
Amino Acid Sequence
;
Amino Acid Substitution
;
Antigens, Viral/chemistry/*genetics/metabolism
;
Capsid Proteins/chemistry/*genetics/metabolism
;
Cloning, Molecular
;
Foot-and-Mouth Disease Virus/classification/*genetics/*metabolism
;
Gene Expression Regulation, Viral
;
Molecular Sequence Data
;
Phylogeny
;
Viral Nonstructural Proteins/chemistry/*genetics/metabolism
3.A Novel PCR Assay for Detecting Brucella abortus and Brucella melitensis.
Saeed ALAMIAN ; Majid ESMAELIZAD ; Taghi ZAHRAEI ; Afshar ETEMADI ; Mohsen MOHAMMADI ; Davoud AFSHAR ; Soheila GHADERI
Osong Public Health and Research Perspectives 2017;8(1):65-70
OBJECTIVES: Brucellosis is a major zoonotic disease that poses a significant public health threat worldwide. The classical bacteriological detection process used to identify Brucella spp. is difficult and time-consuming. This study aimed to develop a novel molecular assay for detecting brucellosis. METHODS: All complete sequences of chromosome 1 with 2.1-Mbp lengths were compared among all available Brucella sequences. A unique repeat sequence (URS) locus on chromosome 1 could differentiate Brucella abortus from Brucella melitensis. A primer set was designed to flank the unique locus. A total of 136 lymph nodes and blood samples were evaluated and classified by the URS-polymerase chain reaction (PCR) method in 2013–2014. RESULTS: Biochemical tests and bacteriophage typing as the golden standard indicated that all Brucella spp. isolates were B. melitensis biovar 1 and B. abortus biovar 3. The PCR results were the same as the bacteriological method for detecting Brucella spp. The sensitivity and specificity of the URS-PCR method make it suitable for detecting B. abortus and B. melitensis. CONCLUSION: Quick detection of B. abortus and B. melitensis can provide the most effective strategies for control of these bacteria. The advantage of this method over other presented methods is that both B. abortus and B. melitensis are detectable in a single test tube. Furthermore, this method covered 100% of all B. melitensis and B. abortus biotypes. The development of this URS-PCR method is the first step toward the development of a novel kit for the molecular identification of B. abortus and B. melitensis.
Bacteria
;
Bacteriophage Typing
;
Brucella abortus*
;
Brucella melitensis*
;
Brucella*
;
Brucellosis
;
Chromosomes, Human, Pair 1
;
Lymph Nodes
;
Methods
;
Polymerase Chain Reaction*
;
Public Health
;
Sensitivity and Specificity
;
Zoonoses