1.Comparative Evaluation for Potential Differentiation of Endothelial Progenitor Cells and Mesenchymal Stem Cells into Endothelial-Like Cells.
Dina SABRY ; Olfat NOH ; Mai SAMIR
International Journal of Stem Cells 2016;9(1):44-52
Understanding the mechanisms of vascular remodeling could lead to more effective treatments for ischemic conditions. We aimed to compare between the abilities of both human Wharton jelly derived mesenchymal stem cells (hMSCs) and human cord blood endothelial progenitor cells (hEPCs) and CD34+ to induce angiogenesis in vitro. hMSCs, hEPCs, and CD34+ were isolated from human umbilical cord blood using microbead (MiniMacs). The cells characterization was assessed by flow cytometry following culture and real-time PCR for vascular endothelial growth factor receptor 2 (VEGFR2) and von Willebrand factor (vWF) to prove stem cells differentiation. The study revealed successful isolation of hEPCs, CD34+, and hMSCs. The hMSCs were identified by gaining CD29+ and CD44+ using FACS analysis. The hEPCs were identified by having CD133+, CD34+, and KDR. The potential ability of hEPCs and CD34+ to differentiate into endothelial-like cells was more than hMSCs. This finding was assessed morphologically in culture and by higher significant VEGFR2 and vWF genes expression (p<0.05) in differentiated hEPCs and CD34+ compared to differentiated hMSCs. hEPCs and CD34+ differentiation into endothelial-like cells were much better than that of hMSCs.
Fetal Blood
;
Flow Cytometry
;
Humans
;
Mesenchymal Stromal Cells*
;
Microspheres
;
Real-Time Polymerase Chain Reaction
;
Stem Cells*
;
Vascular Endothelial Growth Factor Receptor-2
;
von Willebrand Factor
;
Wharton Jelly
2.Treatment of In-Stent Stenosis Following Flow Diversion of Intracranial Aneurysms with Cilostazol and Clopidogrel
Ehsan DOWLATI ; Kory B. Dylan PASKO ; Jiaqi LIU ; Charles A. MILLER ; Daniel R. FELBAUM ; Samir SUR ; Jason J. CHANG ; Ai-Hsi LIU ; Rocco A. ARMONDA ; Jeffrey C. MAI
Neurointervention 2021;16(3):285-292
In-stent stenosis is a feared complication of flow diversion treatment for cerebral aneurysms. We present 2 cases of patients treated with pipeline flow diversion for unruptured cerebral aneurysms. Initial perioperative dual antiplatelet therapy (DAPT) consisted of standard aspirin plus clopidogrel. At 6-month follow-up cerebral angiography, the patients were noted to have developed significant in-stent stenosis (63% and 53%). The patients were treated with cilostazol and clopidogrel for at least 6 months. Subsequent angiography at 1-year post-treatment showed significant improvement of the in-stent stenosis from 63% to 34% and 53% to 21%. The role of cilostazol as treatment of intracranial in-stent stenosis has not been previously described. Cilostazol’s vasodilatory effect and suppression of vascular smooth muscle proliferation provides ideal benefits in this setting. Cilostazol plus clopidogrel may be a safe and effective alternative to standard DAPT for treatment of in-stent stenosis following flow diversion and warrants further consideration and investigation.