1.Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients
Nihal M. BATOUTY ; Ahmad M. TAWFIK ; Donia M. SOBH ; Basma N. GADELHAK ; Shimaa EL‑ASHWAH ; Mohamed Abdelghafar HUSSEIN ; Mai GAD ; A. Ashraf Abd El AZIZ ; Mahmoud Abd EL‑SHAHED ; Rasha KARAM
Journal of Cardiovascular Imaging 2024;32(1):18-
Background:
Cardiac magnetic resonance imaging (CMR) is the modality of choice for quantification of myocardial iron overload in β-thalassemia major patients using the T2* sequence. CMR feature tracking (FT) is a recent magnetic resonance imaging tool that gives an idea about myocardial fibers deformation; thus, it can detect early impairment in myocardial function even before the reduction in ejection fraction.
Methods:
This study aims to assess the ability of left ventricular CMR-FT in the early detection of systolic dysfunction in β thalassemia major patients and to correlate it with the degree of myocardial iron overload measured by CMR T2*.This prospective study enrolled 57 β thalassemia major patients who received long-term blood transfusion and 20 healthy controls. CMR was used to evaluate left ventricular volumes, ejection fraction, and the amount of myocardial T2*. A two-dimensional left ventricular FT analysis was performed. Both global and segmental left ventricular strain values were obtained.
Results:
The mean global circumferential strain (GCS) and global radial strain (GRS) values were significantly lower in patients compared to control (P = 0.002 and P = 0.006, respectively). No correlation was found between T2* values and ejection fraction; however, there was a significant correlation between T2* values and GCS and GRS (P = 0.012 and P = 0.025, respectively) in thalassemia patients. Regional strain revealed significantly lower values of GCS and GRS in basal regions compared to apical ones (P = 0.000).
Conclusions
Our study revealed that CMR-FT can play a role in the early detection of systolic impairment in thalas‑ semia patients.
2.Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients
Nihal M. BATOUTY ; Ahmad M. TAWFIK ; Donia M. SOBH ; Basma N. GADELHAK ; Shimaa EL‑ASHWAH ; Mohamed Abdelghafar HUSSEIN ; Mai GAD ; A. Ashraf Abd El AZIZ ; Mahmoud Abd EL‑SHAHED ; Rasha KARAM
Journal of Cardiovascular Imaging 2024;32(1):18-
Background:
Cardiac magnetic resonance imaging (CMR) is the modality of choice for quantification of myocardial iron overload in β-thalassemia major patients using the T2* sequence. CMR feature tracking (FT) is a recent magnetic resonance imaging tool that gives an idea about myocardial fibers deformation; thus, it can detect early impairment in myocardial function even before the reduction in ejection fraction.
Methods:
This study aims to assess the ability of left ventricular CMR-FT in the early detection of systolic dysfunction in β thalassemia major patients and to correlate it with the degree of myocardial iron overload measured by CMR T2*.This prospective study enrolled 57 β thalassemia major patients who received long-term blood transfusion and 20 healthy controls. CMR was used to evaluate left ventricular volumes, ejection fraction, and the amount of myocardial T2*. A two-dimensional left ventricular FT analysis was performed. Both global and segmental left ventricular strain values were obtained.
Results:
The mean global circumferential strain (GCS) and global radial strain (GRS) values were significantly lower in patients compared to control (P = 0.002 and P = 0.006, respectively). No correlation was found between T2* values and ejection fraction; however, there was a significant correlation between T2* values and GCS and GRS (P = 0.012 and P = 0.025, respectively) in thalassemia patients. Regional strain revealed significantly lower values of GCS and GRS in basal regions compared to apical ones (P = 0.000).
Conclusions
Our study revealed that CMR-FT can play a role in the early detection of systolic impairment in thalas‑ semia patients.
3.Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients
Nihal M. BATOUTY ; Ahmad M. TAWFIK ; Donia M. SOBH ; Basma N. GADELHAK ; Shimaa EL‑ASHWAH ; Mohamed Abdelghafar HUSSEIN ; Mai GAD ; A. Ashraf Abd El AZIZ ; Mahmoud Abd EL‑SHAHED ; Rasha KARAM
Journal of Cardiovascular Imaging 2024;32(1):18-
Background:
Cardiac magnetic resonance imaging (CMR) is the modality of choice for quantification of myocardial iron overload in β-thalassemia major patients using the T2* sequence. CMR feature tracking (FT) is a recent magnetic resonance imaging tool that gives an idea about myocardial fibers deformation; thus, it can detect early impairment in myocardial function even before the reduction in ejection fraction.
Methods:
This study aims to assess the ability of left ventricular CMR-FT in the early detection of systolic dysfunction in β thalassemia major patients and to correlate it with the degree of myocardial iron overload measured by CMR T2*.This prospective study enrolled 57 β thalassemia major patients who received long-term blood transfusion and 20 healthy controls. CMR was used to evaluate left ventricular volumes, ejection fraction, and the amount of myocardial T2*. A two-dimensional left ventricular FT analysis was performed. Both global and segmental left ventricular strain values were obtained.
Results:
The mean global circumferential strain (GCS) and global radial strain (GRS) values were significantly lower in patients compared to control (P = 0.002 and P = 0.006, respectively). No correlation was found between T2* values and ejection fraction; however, there was a significant correlation between T2* values and GCS and GRS (P = 0.012 and P = 0.025, respectively) in thalassemia patients. Regional strain revealed significantly lower values of GCS and GRS in basal regions compared to apical ones (P = 0.000).
Conclusions
Our study revealed that CMR-FT can play a role in the early detection of systolic impairment in thalas‑ semia patients.
4.Global and regional cardiac magnetic resonance feature tracking left ventricular strain analysis in assessing early myocardial disease in β thalassemia major patients
Nihal M. BATOUTY ; Ahmad M. TAWFIK ; Donia M. SOBH ; Basma N. GADELHAK ; Shimaa EL‑ASHWAH ; Mohamed Abdelghafar HUSSEIN ; Mai GAD ; A. Ashraf Abd El AZIZ ; Mahmoud Abd EL‑SHAHED ; Rasha KARAM
Journal of Cardiovascular Imaging 2024;32(1):18-
Background:
Cardiac magnetic resonance imaging (CMR) is the modality of choice for quantification of myocardial iron overload in β-thalassemia major patients using the T2* sequence. CMR feature tracking (FT) is a recent magnetic resonance imaging tool that gives an idea about myocardial fibers deformation; thus, it can detect early impairment in myocardial function even before the reduction in ejection fraction.
Methods:
This study aims to assess the ability of left ventricular CMR-FT in the early detection of systolic dysfunction in β thalassemia major patients and to correlate it with the degree of myocardial iron overload measured by CMR T2*.This prospective study enrolled 57 β thalassemia major patients who received long-term blood transfusion and 20 healthy controls. CMR was used to evaluate left ventricular volumes, ejection fraction, and the amount of myocardial T2*. A two-dimensional left ventricular FT analysis was performed. Both global and segmental left ventricular strain values were obtained.
Results:
The mean global circumferential strain (GCS) and global radial strain (GRS) values were significantly lower in patients compared to control (P = 0.002 and P = 0.006, respectively). No correlation was found between T2* values and ejection fraction; however, there was a significant correlation between T2* values and GCS and GRS (P = 0.012 and P = 0.025, respectively) in thalassemia patients. Regional strain revealed significantly lower values of GCS and GRS in basal regions compared to apical ones (P = 0.000).
Conclusions
Our study revealed that CMR-FT can play a role in the early detection of systolic impairment in thalas‑ semia patients.
5.Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis.
Mai A ABD-ELMAWLA ; Heba R GHAIAD ; Enas S GAD ; Kawkab A AHMED ; Maha ABDELMONEM
Journal of Zhejiang University. Science. B 2023;24(8):723-733
Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-β1 (TGF-β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin-1β (IL-1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-κB (NF-κB) and hypoxia‑inducible factor‑1α (HIF-1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-κB.
Animals
;
Rats
;
Anti-Inflammatory Agents
;
Bleomycin/toxicity*
;
Fibronectins/metabolism*
;
Fibrosis
;
Inflammasomes/metabolism*
;
Ivermectin/adverse effects*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pulmonary Fibrosis/drug therapy*