1.Comparative Study of Poly(L-Lactic Acid) Scaffolds Coated with Chitosan Nanoparticles Prepared via Ultrasonication and Ionic Gelation Techniques.
Majid SALEHI ; Mahdi NASERI-NOSAR ; Mahmoud AZAMI ; Saeedeh Jafari NODOOSHAN ; Javad ARISH
Tissue Engineering and Regenerative Medicine 2016;13(5):498-506
In this study, an attempt was made to develop bi-functional constructs serving both as scaffolds and potential delivery systems for application in neural tissue engineering. The constructs were prepared in two steps. In the first step, the bulks of poly (L-lactic acid) (PLLA) in 1, 4-dioxane/water (87:13) were fabricated using liquid-liquid thermally induced phase separation technique. In the next step, the prepared bulks were coated with chitosan nanoparticles produced by two different techniques of ultrasonication and ionic gelation by grafting-coating technique. In ultrasonication technique, the chitosan solution (2 mg/mL) in acetic acid/sodium acetate buffer (90:10) was irradiated by an ultrasound generator at 20 kHz and power output of 750 W for 100 s. In ionic gelation technique, the tripolyphosphate in water solution (1 mg/mL) was added to the same chitosan solution. The physicochemical properties of the products were characterized by Scanning Electron Microscopy, Attenuated Total Reflection Fourier Transform-Infrared, liquid displacement technique, contact angle measurement, compressive and tensile tests, as well as zeta potential and particle size analysis using dynamic light scattering. Moreover, the cell proliferation and attachment on the scaffolds were evaluated through human glioblastoma cell line (U-87 MG) and human neuroblastoma cell line [BE (2)-C] culture respectively. The results showed that the samples coated with chitosan nanoparticles prepared by ultrasonication possessed enhanced hydrophilicity, biodegradation and cytocompatibility compared with pure PLLA and PLLA coated with chitosan nanoparticles prepared by ionic gelation. This study suggests successful nanoparticles-scaffold systems which can act simultaneously as potential delivery systems and tissue engineering scaffolds.
Cell Line
;
Cell Proliferation
;
Chitosan*
;
Dynamic Light Scattering
;
Glioblastoma
;
Humans
;
Hydrophobic and Hydrophilic Interactions
;
Microscopy, Electron, Scanning
;
Nanoparticles*
;
Neuroblastoma
;
Particle Size
;
Tissue Engineering
;
Ultrasonography
;
Water
2.Promotion of excisional wound repair by a menstrual blood-derived stem cell-seeded decellularized human amniotic membrane.
Saeed FARZAMFAR ; Majid SALEHI ; Arian EHTERAMI ; Mahdi NASERI-NOSAR ; Ahmad VAEZ ; Amir Hassan ZARNANI ; Hamed SAHRAPEYMA ; Mohammad Reza SHOKRI ; Mehdi ALEAHMAD
Biomedical Engineering Letters 2018;8(4):393-398
This is the first study demonstrating the efficacy of menstrual blood-derived stem cell (MenSC) transplantation via decellularized human amniotic membrane (DAM), for the promotion of skin excisional wound repair. The DAM was seeded with MenSCs at the density of 3 × 10⁴ cells/cm² and implanted onto a rat's 1.50 × 1.50 cm² full-thickness excisional wound defect. The results of wound closure and histopathological examinations demonstrated that the MenSC-seeded DAM could significantly improve the wound healing compared with DAM-treatment. All in all, our data indicated that the MenSCs can be a potential source for cell-based therapies to regenerate skin injuries.
Amnion*
;
Humans*
;
Skin
;
Stem Cells
;
Wound Healing
;
Wounds and Injuries*