1.miR-582-5p regulates DUSP1 to modulate Mycobacterium tuberculosis infection in macrophages.
Yanming SUN ; Fengxia LIU ; Tingting CHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):406-412
Objective To explore the effect of miR-582-5p on Mycobacterium tuberculosis (Mtb)-infected macrophages by regulating dual specificity phosphatase 1 (DUSP1). Methods THP-1 macrophages were divided into six groups: control group, Mtb group, inhibitor-NC group, miR-582-5p inhibitor group, miR-582-5p inhibitor+si-NC group, and miR-582-5p inhibitor+si-DUSP1 group. QRT-PCR was applied to detect the gene expression of miR-582-5p and DUSP1 in cells. ELISA kit was used to detect the levels of interferon γ (IFN-γ), interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and interleukin 1β (IL-1β). CCK-8 method was applied to detect cell proliferation. Flow cytometry was applied to detect cell apoptosis rate. Western blot analysis was used to measure the protein expression levels of B-cell lymphoma 2 (Bcl2), Bcl2-associated X (BAX), and cleaved-caspase 3 (c-caspase-3) in cells. In addition, the target relationship between miR-582-5p and DUSP1 was verified. Results Compared with the control group, the expression of miR-582-5p, levels of IFN-γ, IL-6, TNF-α, IL-1β, bacterial load and OD450 values (24 h, 48 h), and the protein expression of Bcl2 in macrophages were higher in the Mtb group, while the mRNA expression of DUSP1, apoptosis rate, and the protein expression levels of c-caspase-3, BAX and DUSP1 were lower. Compared with the Mtb group and the inhibitor-NC group, the above-mentioned indicators in the miR-582-5p inhibitor group were partially reversed. Down-regulation of DUSP1 expression partially reversed the inhibitory effect of down-regulation of miR-582-5p expression on Mtb-infected macrophages. Conclusion Inhibiting the expression of miR-582-5p can up-regulate DUSP1, thereby inhibiting the proliferation and inflammatory response of Mtb-infected macrophages and promoting cell apoptosis.
Humans
;
Macrophages/metabolism*
;
Dual Specificity Phosphatase 1/metabolism*
;
MicroRNAs/metabolism*
;
Mycobacterium tuberculosis/physiology*
;
Tuberculosis/microbiology*
;
Apoptosis/genetics*
;
THP-1 Cells
;
Cell Proliferation/genetics*
;
Interferon-gamma/genetics*
;
Tumor Necrosis Factor-alpha/genetics*
;
Interleukin-1beta/genetics*
2.Research progress on mechanisms of macrophages in innate immunity against invasive fungal infections.
Chuhan HUANG ; Guoqiang ZHU ; Li HUANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):756-761
Invasive fungal infections (IFIs) are a group of diseases caused by fungal pathogens, primarily Candida, Aspergillus, and Cryptococcus, which invade the body, proliferate in deep tissues, organs, or the bloodstream, and lead to localized or systemic severe infections. These infections impose significantclinical and economic burdens due to their high mortality rates, the high cost and limited availability of antifungal drugs, and the frequent adverse effects. Invasive fungal pathogens invade the host through hyphae, spores, and secreted adhesive proteins, primarily triggering disease via signal cascades resulting from the binding of fungal membrane ligands to host receptors, as well as through secreted substances and intrinsic toxins. Macrophages, as the first line of defense against invasive fungal pathogens, play a crucial role in combating IFIs. They combat fungal pathogens through mechanisms such as antigen recognition, phagocytosis, oxidative killing, polarization, and the regulation of various bioactive substances. This article reviews recent research progress on the mechanisms by which macrophages contribute to innate immunity against invasive fungal infections. Additionally, it discusses the immune evasion strategies employed by invasive fungal pathogens to counteract macrophages, aiming to provide new insights for the prevention and treatment of invasive fungal infections.
Humans
;
Immunity, Innate
;
Macrophages/immunology*
;
Invasive Fungal Infections/microbiology*
;
Animals
;
Phagocytosis/immunology*
3.Curvularin derivatives from hydrothermal vent sediment fungus Penicillium sp. HL-50 guided by molecular networking and their anti-inflammatory activity.
Chunxue YU ; Zixuan XIA ; Zhipeng XU ; Xiyang TANG ; Wenjuan DING ; Jihua WEI ; Danmei TIAN ; Bin WU ; Jinshan TANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):119-128
Guided by molecular networking, nine novel curvularin derivatives (1-9) and 16 known analogs (10-25) were isolated from the hydrothermal vent sediment fungus Penicillium sp. HL-50. Notably, compounds 5-7 represented a hybrid of curvularin and purine. The structures and absolute configurations of compounds 1-9 were elucidated via nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction, electronic circular dichroism (ECD) calculations, 13C NMR calculation, modified Mosher's method, and chemical derivatization. Investigation of anti-inflammatory activities revealed that compounds 7-9, 11, 12, 14, 15, and 18 exhibited significant suppressive effects against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine macrophage RAW264.7 cells, with IC50 values ranging from 0.44 to 4.40 μmol·L-1. Furthermore, these bioactive compounds were found to suppress the expression of inflammation-related proteins, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), NLR family pyrin domain-containing protein 3 (NLRP3), and nuclear factor kappa-B (NF-κB). Additional studies demonstrated that the novel compound 7 possessed potent anti-inflammatory activity by inhibiting the transcription of inflammation-related genes, downregulating the expression of inflammation-related proteins, and inhibiting the release of inflammatory cytokines, indicating its potential application in the treatment of inflammatory diseases.
Penicillium/chemistry*
;
Mice
;
Animals
;
Anti-Inflammatory Agents/isolation & purification*
;
RAW 264.7 Cells
;
Nitric Oxide/metabolism*
;
Hydrothermal Vents/microbiology*
;
Macrophages/immunology*
;
Molecular Structure
;
Nitric Oxide Synthase Type II/immunology*
;
Cyclooxygenase 2/immunology*
;
Geologic Sediments/microbiology*
;
NF-kappa B/immunology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/immunology*
4.Knock-down of long intergenic noncoding RNA cyclooxygenase 2 (lincRNA-COX2) inhibits apoptosis and polarization into M1 in Listeria monocytogenes-infected macrophages.
Yurong ZHU ; Shuang HUANG ; Lin LIN ; Fengyuan ZHANG ; Xugan JIANG ; Shengxia CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(4):289-294
Objective To investigate the effect of long intergenic non-coding RNA COX2 (lincRNA-COX2) on apoptosis and polarization of Listeria monocytogenes (Lm)-infected RAW264.7 cells. Methods RAW264.7 cells were cultured and divided into control group (uninfected cells), Lm infection group, negative control of small interfering RNA (si-NC) group, si-NC and Lm infection group, small interfering RNA of lincRNA-COX2 (si-lincRNA-COX2) group, si-lincRNA-COX2 and Lm infection group. RAW264.7 cells were infected with MOI=10 Lm for 6 hours, and then the inhibition efficiency of siRNA transfection was detected by fluorescence microscope and quantitative real-time PCR (qRT-PCR). The expression levels of cleaved-caspase-3(c-caspase-3), caspase-3, B-cell lymphoma-2 (Bcl2), Bcl2 associated X protein (BAX), arginase 1 (Arg1), inducible nitric oxide synthase (iNOS) were detected by Western blot analysis. Results c-caspase-3/caspase-3, BAX/Bcl2 and iNOS were significantly up-regulated, while the level of Arg1 was down-regulated in Lm-infected RAW264.7 cells compared with control group. LincRNA-COX2 knockdown inhibited the increase of protein levels for BAX/Bcl2, c-caspase-3/caspase-3 and iNOS in Lm-infected RAW264.7 cells, while the level of Arg1 in Lm-infected RAW264.7 cells was up-regulated. Conclusion Knockdown of lincRNA-COX2 can inhibit cell apoptosis and suppress the macrophage polarization into M1 type in Lm-infected RAW264.7 cells.
Apoptosis/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Listeria monocytogenes/pathogenicity*
;
Macrophages/microbiology*
;
RNA, Long Noncoding/metabolism*
;
RNA, Small Interfering/genetics*
;
Animals
;
Mice
5.Efficacy and mechanism of Lianhua Qingwen Capsules(LHQW) on chemotaxis of macrophages in acute lung injury (ALI) animal model.
Qi LI ; Jie YIN ; Qing-Sen RAN ; Qing YANG ; Li LIU ; Zheng ZHAO ; Yu-Jie LI ; Ying CHEN ; Li-Dong SUN ; Ya-Jie WANG ; Xiao-Gang WENG ; Wei-Yan CAI ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2019;44(11):2317-2323
This paper was mainly to discuss the potential role and mechanism of Lianhua Qingwen Capsules(LHQW) in inhibiting pathological inflammation in the model of acute lung injury caused by bacterial infection. For in vitro study, the mRNA expression of MCP-1 in RAW264.7 cells and THP-1 cells, the content of MCP-1 in cell supernatant, as well as the effect of LHQW on chemotaxis of macrophages were detected. For in vivo study, mice were randomly divided into 7 groups, including normal group, model group(LPS 5 mg·kg~(-1)), LHQW 300, 600 and 1 200 mg·kg~(-1)(low, middle and high dose) groups, dexamethasone 5 mg·kg~(-1) group and penicillin-streptomycin group. Then, the anal temperature was detected two hours later. Dry weight and wet weight of lung tissues in mice were determined; TNF-α and MCP-1 levels in alveolar lavage fluid and MCP-1 in serum were detected. In addition, the infiltration of alveolar macrophages was also observed and the infiltration count of alveolar macrophages was measured by CCK-8 method. HE staining was also used to observe the inflammatory infiltration of lung tissues in mice. Both of the in vitro and in vivo data consistently have confirmed that: by down-regulating the expression of MCP-1, LHWQ could efficiently decrease the chemotaxis of monocytes toward the pulmonary infection foci, thus blocking the disease development in ALI animal model.
Acute Lung Injury
;
microbiology
;
Animals
;
Bacterial Infections
;
drug therapy
;
Bronchoalveolar Lavage Fluid
;
Capsules
;
Chemokine CCL2
;
metabolism
;
Chemotaxis
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Lipopolysaccharides
;
Lung
;
Macrophages
;
drug effects
;
Mice
;
RAW 264.7 Cells
;
Random Allocation
;
THP-1 Cells
;
Tumor Necrosis Factor-alpha
;
metabolism
6.Expression of triggering receptors expressed by myeloid cells-1 in macrophages stimulated by Porphyromonas gingivalis-lipopolysaccharide.
Yun YANG ; Shan-Shan CHEN ; Chun-Mei XU ; Ya-Fei WU ; Lei ZHAO
West China Journal of Stomatology 2018;36(5):475-481
OBJECTIVE:
Soluble triggering receptors expressed by myeloid cells-1 (sTREM-1) and inflammatory cytokine tumor necrosis factor-α (TNF-α) in macrophage cells were stimulated by Porphyromonas gingivalis-lipopolysaccharide (Pg-LPS) to investigate the expression of triggering receptors expressed by myeloid cells-1 (TREM-1) and further explore the correlation between TREM-1 and the pathogenesis of periodontitis.
METHODS:
THP-1 cells (a human monocytic cell line derived from an acute monocytic leukemia patient) were induced to differentiate THP-1 macrophages by phorbol-12-myristate-13-acetate and were injected with 0 (blank control), 0.5, or 1.0 μg·mL⁻¹ Pg-LPS. The THP-1 cells were then grouped in accordance with incubation time, and each group was incubated for 4, 6, 12, or 24 h. The expression of the TREM-1 mRNA in macrophages was detected by real-time quantitative polymerase chain reaction, while the expression of TREM-1 protein was detected by Western blot; the site where TREM-1 protein expression was observed in macrophages was detected by immunofluorescence staining, and the expression of soluble sTREM-1 and TNF-α in cell culture medium was detected by enzyme-linked immunosorbent assay.
RESULTS:
Compared with the blank control group, the expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in Pg-LPS-stimulated macrophages was significantly upregulated (P<0.05). The expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in the supernatant of cell culture was higher in the 1.0 μg·mL⁻¹ Pg-LPS group than in the 0.5 μg·mL⁻¹ group; this expression was statistically significant since the 6, 4, and 4 h time point (P<0.05). Cell immunofluorescence staining showed that TREM-1 protein was positive when the THP-1 macrophages was stimulated by Pg-LPS (1.0 μg·mL⁻¹) for 24 h, and the staining sites of TREM-1 were mainly located in the cell membrane of the macrophages (P<0.05). The expression level of TNF-α increased in groups stimulated by Pg-LPS, and the expression level of TNF-α was significantly higher in 1.0 μg·mL⁻¹ Pg-LPS stimulated groups than in 0.5 μg·mL⁻¹ Pg-LPS-stimulated groups since the 6 h time point (P<0.05). The expressions of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in 0.5 μg·mL⁻¹ Pg-LPS-stimulated macrophages were positively correlated with one another (r=1, P<0.05), but no statistically significant correlation was found in the expression of TNF-α. The positive correlation between sTREM-1 and TNF-α expressions was detected when macrophages were stimulated by 1.0 μg·mL⁻¹ Pg-LPS (r=1, P<0.05).
CONCLUSIONS
The expression of TREM-1 mRNA, TREM-1 protein, and sTREM-1 in the culture supernatant in Pg-LPS-stimulated macrophages was significantly upregulated on the basis of the concentration of Pg-LPS; moreover, their upregulation was positively correlated with one another. The expression of TNF-α in the supernatant of cell culture was also upregulated and was positively correlated with the expression of sTREM-1 at the group of high Pg-LPS concentration (1.0 μg·mL⁻¹). Results reveal that TREM-1, which has been realized as a proinflammatory receptor protein, can promote the development of periodontitis by regulating the expression of TNF-α in macrophages.
Adult
;
Humans
;
Lipopolysaccharides
;
Macrophages
;
metabolism
;
Myeloid Cells
;
Periodontitis
;
metabolism
;
microbiology
;
Porphyromonas gingivalis
;
pathogenicity
;
Triggering Receptor Expressed on Myeloid Cells-1
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
7.Identification of active compound combination contributing to anti-inflammatory activity of Xiao-Cheng-Qi Decoction via human intestinal bacterial metabolism.
Xing-Yan LIU ; Li LI ; Xue-Qing LI ; Bo-Yang YU ; Ji-Hua LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):513-524
Human intestinal bacteria play an important role in the metabolism of herbal medicines, leading to the variations in their pharmacological profile. The present study aimed to investigate the metabolism of Xiao-Cheng-Qi decoction (XCQD) by human intestinal bacteria and to discover active component combination (ACC) contributing to the anti-inflammatory activity of XCQD. The water extract of XCQD was anaerobically incubated with human intestinal bacteria suspensions for 48 h at 37 °C. A liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) method was performed for identification of the metabolites. In addition, the anti-inflammatory effects of XCQD and biotransformed XCQD (XCQD-BT) were evaluated in vitro with cytokines in RAW264.7 cells induced by lipopolysaccharide (LPS). A total of 51 compounds were identified in XCQD and XCQD-BT. Among them, 20 metabolites were proven to be transformed by human intestinal bacteria. Significantly, a combination of 14 compounds was identified as ACC from XCQD-BT, which was as effective as XCQD in cell models of inflammation. In conclusion, this study provided an applicable method, based on intestinal bacterial metabolism, for identifying combinatory compounds responsible for a certain pharmacological activity of herbal medicines.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
therapeutic use
;
Bacteria
;
metabolism
;
Biotransformation
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
metabolism
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
Humans
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Models, Biological
;
Molecular Structure
;
RAW 264.7 Cells
8.Secondary metabolites from a deep-sea-derived actinomycete Micrococcus sp. R21.
Kun PENG ; Rui-qiang SU ; Gai-yun ZHANG ; Xuan-xuan CHENG ; Quan YANG ; Yong-hong LIU ; Xian-wen YANG
China Journal of Chinese Materia Medica 2015;40(12):2367-2371
To investigate cytotoxic secondary metabolites of Micrococcus sp. R21, an actinomycete isolated from a deep-sea sediment (-6 310 m; 142 degrees 19. 9' E, 10 degrees 54. 6' N) of the Western Pacific Ocean, column chromatography was introduced over silica gel, ODS, and Sephadex LH-20. As a result, eight compounds were obtained. By mainly detailed analysis of the NMR data, their structures were elucidated as cyclo(4-hydroxy-L-Pro-L-leu) (1), cyclo(L-Pro-L-Gly) (2), cyclo( L-Pro-L-Ala) (3), cyclo( D-Pro-L-Leu) (4), N-β-acetyltryptamine (5), 2-hydroxybenzoic acid (6), and phenylacetic acid (7). Compound 1 exhibited weak cytotoxic activity against RAW264. 7 cells with IC50 value of 9.1 μmol x L(-1).
Animals
;
Biological Factors
;
chemistry
;
isolation & purification
;
metabolism
;
pharmacology
;
Cell Survival
;
drug effects
;
Macrophages
;
cytology
;
drug effects
;
Magnetic Resonance Spectroscopy
;
Mass Spectrometry
;
Mice
;
Micrococcus
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Molecular Structure
;
Phylogeny
;
RAW 264.7 Cells
;
Seawater
;
microbiology
;
Secondary Metabolism
9.Elucidating the role of ApxI in hemolysis and cellular damage by using a novel apxIA mutant of Actinobacillus pleuropneumoniae serotype 10.
Nai Yun CHANG ; Zeng Weng CHEN ; Ter Hsin CHEN ; Jiunn Wang LIAO ; Cheng Chung LIN ; Maw Sheng CHIEN ; Wei Cheng LEE ; Jiunn Horng LIN ; Shih Ling HSUAN
Journal of Veterinary Science 2014;15(1):81-89
Exotoxins produced by Actinobacillus (A.) pleuropneumoniae (Apx) play major roles in the pathogenesis of pleuropneumonia in swine. This study investigated the role of ApxI in hemolysis and cellular damage using a novel apxIA mutant, ApxIA336, which was developed from the parental strain A. pleuropneumoniae serotype 10 that produces only ApxI in vitro. The genotype of ApxIA336 was confirmed by PCR, Southern blotting, and gene sequencing. Exotoxin preparation derived from ApxIA336 was analyzed for its bioactivity towards porcine erythrocytes and alveolar macrophages. Analysis results indicated that ApxIA336 contained a kanamycin-resistant cassette inserted immediately after 1005 bp of the apxIA gene. Phenotype analysis of ApxIA336 revealed no difference in the growth rate as compared to the parental strain. Meanwhile, ApxI production was abolished in the bacterial culture supernatant, i.e. exotoxin preparation. The inability of ApxIA336 to produce ApxI corresponded to the loss of hemolytic and cytotoxic bioactivity in exotoxin preparation, as demonstrated by hemolysis, lactate dehydrogenase release, mitochondrial activity, and apoptosis assays. Additionally, the virulence of ApxIA336 appeared to be attenuated by 15-fold in BALB/c mice. Collectively, ApxI, but not other components in the exotoxin preparation of A. pleuropneumoniae serotype 10, was responsible for the hemolytic and cytotoxic effects on porcine erythrocytes and alveolar macrophages.
Actinobacillus pleuropneumoniae/genetics/*pathogenicity/*physiology
;
Animals
;
*Apoptosis
;
Bacterial Proteins/genetics/metabolism
;
Blotting, Southern
;
Exotoxins/*genetics
;
Hemolysin Proteins/genetics/metabolism
;
*Hemolysis
;
Macrophages, Alveolar/metabolism/*microbiology
;
Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Swine
;
Virulence
10.Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism.
Linli ZHENG ; Yumei GE ; Weilin HU ; Jie YAN
Journal of Zhejiang University. Medical sciences 2013;42(2):156-163
OBJECTIVETo determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism.
METHODSOmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays.
RESULTSThe bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01).
CONCLUSIONExpression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.
Antigens, Bacterial ; genetics ; metabolism ; Bacterial Outer Membrane Proteins ; genetics ; metabolism ; Cell Line ; Chaperonin 60 ; genetics ; metabolism ; Humans ; Leptospira interrogans ; genetics ; immunology ; pathogenicity ; Lipoproteins ; genetics ; metabolism ; Macrophages ; microbiology

Result Analysis
Print
Save
E-mail