1.Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein.
Solange dos Santos COSTA ; Marjorie DE ASSIS GOLIM ; Bartira ROSSI-BERGMANN ; Fabio Trindade Maranhao COSTA ; Selma GIORGIO
The Korean Journal of Parasitology 2011;49(4):357-364
Various Leishmania species were engineered with green fluorescent protein (GFP) using episomal vectors that encoded an antibiotic resistance gene, such as aminoglycoside geneticin sulphate (G418). Most reports of GFP-Leishmania have used the flagellated extracellular promastigote, the stage of parasite detected in the midgut of the sandfly vector; fewer studies have been performed with amastigotes, the stage of parasite detected in mammals. In this study, comparisons were made regarding the efficiency for in vitro G418 selection of GFP-Leishmania amazonensis promastigotes and amastigotes and the use of in vivo G418 selection. The GFP-promastigotes retained episomal plasmid for a prolonged period and G418 treatment was necessary and efficient for in vitro selection. In contrast, GFP-amastigotes showed low retention of the episomal plasmid in the absence of G418 selection and low sensitivity to antibiotics in vitro. The use of protocols for G418 selection using infected BALB/c mice also indicated low sensitivity to antibiotics against amastigotes in cutaneous lesions.
Amebicides/*pharmacology
;
Animals
;
Flow Cytometry
;
Gentamicins/*pharmacology
;
Green Fluorescent Proteins/*chemistry
;
Host-Parasite Interactions
;
Leishmania mexicana/drug effects/genetics/*growth & development
;
Leishmaniasis, Cutaneous/*parasitology
;
Luminescent Agents/*chemistry
;
Macrophages, Peritoneal/parasitology
;
Mice
;
Mice, Inbred BALB C
;
Organisms, Genetically Modified
;
Spectrometry, Fluorescence
2.Involvement of MAPK activation in chemokine or COX-2 productions by Toxoplasma gondii.
Ji Young KIM ; Myoung Hee AHN ; Hyun Ouk SONG ; Jong Hak CHOI ; Jae Sook RYU ; Duk Young MIN ; Myung Hwan CHO
The Korean Journal of Parasitology 2006;44(3):197-207
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.
Toxoplasmosis/*enzymology/*immunology
;
Toxoplasma/*immunology/*metabolism
;
Mitogen-Activated Protein Kinases/*metabolism
;
Mice, Inbred BALB C
;
Mice
;
Macrophages, Peritoneal/enzymology/immunology/parasitology
;
Humans
;
Hela Cells
;
Enzyme Activation
;
Cyclooxygenase 2/*biosynthesis
;
Chemokines/*biosynthesis
;
Animals
3.Toxoplasma gondii: ultrastructural localization of specific antigens and inhibition of intracellular multiplication by monoclonal antibodies.
Boo Young LEE ; Myoung Hee AHN ; Hyun Chul KIM ; Duk Young MIN
The Korean Journal of Parasitology 2001;39(1):67-75
This experiment was focused on the characterization of anti-Toxoplasma monoclonal antibodies (mAbs) and the effect of mAbs on the parasite invasion of mouse peritoneal macrophages. Twenty eight mAbs including M110, M556, R7A6 and M621 were characterized by Ab titer, immunoglobulin isotyping and western blot pattern. Antibody titer (optical density) of 4 mAbs, M110, M556, R7A6 and M621, were 0.53, 0.67, 0.45 and 0.39 (normal mouse serum; 0.19) with the same IgG1 isotypes shown by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis showed that M110, M556, R7A6 and M621 reacted with the 33 kDa (p30), 31 kDa (p28), 43 kDa and 36 kDa protein. Immunogold labelling of mAbs M110, M556, R7A6 and M621 reacted with the surface membrane, dense granules and parasitophorous vacuolar membrane (PVM), rhoptries and cytoplasm of tachyzoite, respectively. For in vitro assay, preincubation of tachyzoites with four mAbs, M110, M556, R7A6 and M621 resulted in the decrease of the number of infected macrophages (P < 0.05) and the suppression of parasite multiplication at 18 h post-infection. Four monoclonal antibodies including M110 (SAG1) were found to have an important role in the inhibition of macrophage invasion and T. gondii multiplication in vitro, and these mAbs may be suitable for vaccine candidates, diagnostic kit and for chemotherapy.
Animals
;
*Antibodies, Monoclonal/pharmacology
;
*Antibodies, Protozoan/pharmacology
;
Antigens, Protozoan/*analysis/immunology
;
Cells, Cultured
;
Depression, Chemical
;
Macrophages, Peritoneal/parasitology
;
Mice
;
Mice, Inbred ICR
;
Support, Non-U.S. Gov't
;
Toxoplasma/growth & development/*immunology