1.The expression, characterization and roles of macrophage colony-stimulating factor receptor in human leukemia cell lines.
Shengsong TANG ; Guibin CHEN ; Qing RAO ; Yiqi GENG ; Kefu WU
Chinese Journal of Pathology 2002;31(3):240-244
OBJECTIVETo explore the expression, characteristics and roles of macrophage colony-stimulating factor receptor (M-CSF-R) in human leukemia cell lines.
METHODSPeripheral blood mononuclear cells (PBMCs) collected from 3 healthy persons, cord blood mononuclear cells (CBMCs) collected from 5 healthy persons and 4 human myelomonocytic leukemia cell lines including J6-1, J6-2, K562 and HL-60 were studied by using ABC immunoperoxidaes assay, indirect immunofluorescene staining, flow cytometry, and Western blot.
RESULTSM-CSF-R was noticed to be localized in the cytoplasm, nucleus and at the membrane in 4 human leukemia cell lines; expression of M-CSF-R was not detected in normal human PBMCs without PHA stimulation. Human PBMCs stimulated by PHA expressed a low level of M-CSF-R. Frequencies of membrane bound M-CSF-R (M-CSF-mR) expression in J6-1, J6-2, K562 and HL-60 were 78.9%, 72.6%, 54.9% and 58.0% respectively. Frequencies of cytoplasm and nucleus associated M-CSF-R (M-CSF-cnR) were 52.3%, 44.3%, 28.0% and 65.3% respectively. One form of M-CSF-R with a molecular weight of 120 000 was detected both in the cytoplasm and nucleus of HL-60 cells. The half-life of M-CSF-cnR in leukemia cells mentioned above was longer than that of corresponding M-CSF-R in stimulated CBMCs, and the half-life of M-CSF-mR in leukemia cells was extended except that of M-CSF-mR in K562 cells. Both anti-M-CSF-R monoclonal antibody and recombinant human M-CSF soluble receptor could cause the growth arrest of HL-60 cell in G(0)/G(1) phase, and could inhibit the formation of colony of HL-60 cell in soft agarose.
CONCLUSIONSExpression of M-CSF-R in leukemia cells is heterogeneous. The accumulation of cellular M-CSF-R results in the low degradation rate of cellular M-CSF-R in leukemia cells, which could be a potential mitotic signal. Signal mediated by M-CSF-R is important and necessary for the growth of HL-60 cell.
Cell Line ; HL-60 Cells ; Humans ; Leukemia ; Leukocytes, Mononuclear ; metabolism ; Macrophage Colony-Stimulating Factor ; metabolism ; Receptor, Macrophage Colony-Stimulating Factor ; Tumor Cells, Cultured
2.Increased levels of multiple forms of dihydrofolate reductase in peripheral blood leucocytes of cancer patients receiving haematopoietic colony-stimulating factors: interim analysis.
M Perwaiz IQBAL ; Ikram A BURNEY ; Fakhra SULTANA ; Naseema MEHBOOBALI ; Tariq SIDDIQUI
Experimental & Molecular Medicine 2000;32(2):84-87
The precise mechanism whereby granulocytes proliferate when haematopoietic colony stimulating factors (CSFs) are used in neutropenic cancer patients is poorly understood. The purpose of this study was to investigate whether these cytokines bring about leucocyte proliferation by increasing the levels of multiple forms of dihydrofolate reductase (DHFR). Blood samples were collected from 36 cancer patients (25 males and 11 females) with chemotherapy-induced neutropenia. One sample of blood from each patient was obtained before therapy either with CSF, such as granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) or with placebo, and another one at the time of resolution of neutropenia. Peripheral blood leucocytes in these blood samples were counted, separated and lysed. From lysates, cytoplasmic samples were prepared and analyzed for active DHFR by a methotrexate-binding assay and for total immunoreactive DHFR by an enzyme linked immunosorbent assay. The increase in total leucocyte count (TLC) was most prominent (P < 0.005) in the CSF group and less so (P < 0.05) in the placebo group. The mean +/- SD concentration values of active DHFR before and after stimulation with GM-CSF found were to be 0.34 +/- 0.4 ng/mg protein and 0.99 +/- 0.82 ng/mg protein, respectively, and in the group treated with G-CSF, 0.24 +/- 0.32 ng/mg protein and 1.18 +/- 2.4 ng/mg protein, respectively. This increase in active DHFR after stimulation with CSF was statistically significant (P <0.05). Similarly, concentration values of immunoreactive but nonfunctional form of DHFR (IRE) were 110 +/- 97 ng/mg protein and 605 +/- 475 ng/mg protein before and after stimulation with GM-CSF, and 115 +/- 165 ng/mg protein and 1,054 +/- 1,095 ng/ mg protein before and after stimulation with G-CSF. This increase in concentration of IRE after stimulation with GM-CSF or G-CSF was statistically significant (P < 0.005). In the control group, there was an increase in the concentration of both active DHFR and IRE after treatment with placebo. However, this was not statistically significant. Resolution of neutropenia was quicker in the groups treated with CSF compared to the control group. Results of this study indicate that colony stimulating factors (G-CSF and GM-CSF) induce white cell proliferation by increasing the levels of multiple forms of DHFR.
Adolescence
;
Adult
;
Cell Division/drug effects
;
Child
;
Female
;
Granulocyte Colony-Stimulating Factor/therapeutic use
;
Granulocyte Colony-Stimulating Factor/pharmacology*
;
Granulocyte Colony-Stimulating Factor/adverse effects
;
Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use
;
Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology*
;
Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects
;
Human
;
Isoenzymes/metabolism
;
Isoenzymes/biosynthesis
;
Leukocyte Count
;
Leukocytes/pathology
;
Leukocytes/enzymology
;
Leukocytes/drug effects
;
Male
;
Middle Age
;
Neoplasms/enzymology
;
Neoplasms/drug therapy
;
Neoplasms/blood*
;
Neutropenia/metabolism*
;
Neutropenia/chemically induce
;
Neutropenia/blood
;
Tetrahydrofolate Dehydrogenase/metabolism*
;
Tetrahydrofolate Dehydrogenase/biosynthesis
3.Expression of colony-stimulating factor 1 in lung adenocarcinoma and its prognostic implication.
Baoxiang PEI ; Bingsheng SUN ; Yu ZHANG ; Anlei WANG ; Zhenfa ZHANG ; Email: ZHANGZHENFA1973@163.COM.
Chinese Journal of Oncology 2015;37(2):113-118
OBJECTIVEThis study aimed to explore the expression of tumor-derived colony-stimulating factor 1 (CSF1), its prognostic significance and underlying related mechanisms in resected lung adenocarcinoma (ADC).
METHODSImmunohistochemistry and tissue microarray were used to detect the expression of CSF1, epidermal growth factor receptor (EGFR), and CD68 in 266 patients with lung adenocarcinoma treated in our department between 2004 and 2008.
RESULTSIn the 266 ADC cases, the positive rates of expression of CSF1, EGFR and CD68 proteins were 56.4%, 42.1% and 81.2%, respectively. The expression level of CSF1 was positively correlated with TNM stage, number of involved nodal stations, tumor recurrence and EGFR expression (P<0.05). Univariate analysis indicated that TNM stage, number of involved lymph nodes, number of involved nodal stations, CSF1 expression, the combination of CSF1/EGFR and co-expression of CSF1/CD68/EGFR were statistically significant for prognosis (P<0.05). The results of multivariate analysis showed that TNM stage, co-expression of CSF1/EGFR and CSF1/CD68/EGFR were significant and independent risk factors for survival (P<0.05). Correlational analysis showed that expression of CSF1 and EGFR in the tumors was positively correlated to the degree of infiltration of interstitial tumor-associated macrophages (TAMs) (respectively; P<0.05).
CONCLUSIONSThe expression of CSF1 indicates a poor prognosis in postoperative lung adenocarcinoma. Co-expression of CSF1 and EGFR may be a valuable independent prognostic predictor, and its mechanism is probably involved in the interaction of cancer cells and TAMs in the progression of lung adenocarcinoma.
Adenocarcinoma ; diagnosis ; metabolism ; Disease Progression ; Humans ; Immunohistochemistry ; Lung Neoplasms ; diagnosis ; metabolism ; Macrophage Colony-Stimulating Factor ; metabolism ; Macrophages ; Prognosis
4.Modulation of expression of human GM-CSF and GM-CSFRalpha by total saponins of Panax ginseng.
Sha-Li WANG ; Di CHEN ; Ya-Ping WANG ; Yong-Gang LIU ; Rong JIANG
Acta Physiologica Sinica 2003;55(4):487-492
The purpose of the present study was to investigate the biological mechanism for modulating granulocytopoiesis by Panax ginseng. The techniques of culture of hematopoietic progenitor cells and hematopoietic stromal cells in vitro, biological assay of hematopoietic growth factor (HGF), immunocytochemistry, in situ hybridization of nucleic acid, immunoprecipitation and Western blot were used to explore the effect of total saponins of Panax ginseng (TSPG) on the expression of human granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte-macrophage colony stimulating factor receptor alpha (GM-CSFRalpha). The results indicated that (1) bone marrow stromal cell (BMSC), thymocyte (TC), splenocyte (SC), endothelial cells (EC), and monocyte (MO) conditioned media prepared with TSPG (50 microg/ml) could significantly enhance the proliferation of CFU-GM; (2) the expressions of GM-CSF in protein and mRNA level in BMSC, TC, SC, EC and MO induced by TSPG (50 microg/ml) were much higher than that of the control; (3) the expression of GM-CSFRalpha protein in hematopoietic cells induced by TSPG (50 microg/ml) was stronger than that of the control; (4) TSPG (50 microg/ml) could stimulate the transient tyrosine phosphorylation of GM-CSFR and Shc protein. We speculate that TSPG may directly and/or indirectly promote the stromal cells and lymphocytes to produce GM-CSF and other cytokine and induce bone marrow hematopoietic cells to express GM-CSF receptors (GM-CSFRalpha), leading to the regulation of the GM-CSFR-mediated signals transduction pathway and the proliferation of human CFU-GM.
Bone Marrow Cells
;
cytology
;
metabolism
;
Cells, Cultured
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
metabolism
;
Hematopoietic Stem Cells
;
cytology
;
metabolism
;
Humans
;
Panax
;
chemistry
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
;
metabolism
;
Saponins
;
isolation & purification
;
pharmacology
;
Signal Transduction
;
Stromal Cells
;
cytology
;
metabolism
5.The expressional alterations of CSF-1R after ischemic injury of cerebral cortex.
Dong Hui YU ; Shuang LIU ; Zeng-Min TIAN ; Shu-Hong LIU ; Xue-Ming GE ; Chang-Man ZHOU ; Ya-Qi WANG ; Ming FAN
Chinese Journal of Applied Physiology 2008;24(1):6-9
AIMTo observe the expressional alterations of colony stimulating factor-1 receptor (CSF-1R) after ischemic injury of cerebral cortex, and study the function of colony stimulating factor-1 (CSF-1)/CSF-1R signal during the process of ischemic injury and repair of central nervous system (CNS).
METHODSWe examined the distribution and expression of CSF-1R in normal brain tissues and ischemic brain tissues by immunohistology and Western blot analysis.
RESULTSThe expression of CSF-1R in neurons could be up-regulated by ischemic injury in CNS.
CONCLUSIONCSF-1/CSF-1R might take part in the process of ischemic injury and repair.
Animals ; Brain Ischemia ; pathology ; physiopathology ; Cerebral Cortex ; blood supply ; Female ; Macrophage Colony-Stimulating Factor ; physiology ; Male ; Mice ; Mice, Inbred BALB C ; Neurons ; metabolism ; Random Allocation ; Receptor, Macrophage Colony-Stimulating Factor ; genetics ; metabolism ; physiology ; Reperfusion Injury ; metabolism ; physiopathology
6.Cardiac valve MCSF-1 and its receptor expression changes in Staphylococcus aureus induced infective endocarditis.
Bo ZHAO ; Liang WU ; Wei SUN ; Xiang-Ning FU ; Jun LI ; Tie-Cheng PAN
Chinese Journal of Cardiology 2006;34(8):744-746
OBJECTIVETo explore the cellular immunology mechanism of infective endocarditis (IE), we investigated the effects of Staphylococcus aureus (S. aureus) on MCSF-1 and its receptor (c-fms) gene expression in cardiac valves.
METHODSThirty-two rabbits were divided into 4 groups: mitral or tricuspid valve artificial lesions with 5 x 10(4) CFU or 5 x 10(6) CFU S. aureus injection. Control rabbits (n = 7) received 5 x 10(6) CFU S. aureus injection. IE after operation were confirmed by naked eyes and electron microscope observations. MCSF-1, c-fms in mitral and tricuspid valves were detected by RT-PCR.
RESULTSTwenty-six rabbits survived the operation and 14 rabbits developed IE (2 with 5 x 10(4) CFU and 12 with 5 x 10(6) CFU S. aureus injection) one day post operation. S. aureus injection alone did not induce IE. Compared to control rabbits, MCSF-1 mRNA was significantly upregulated and c-fms mRNA significantly downregulated after 5 x 10(4) CFU S. aureus injection with heart valve artificial lesion in mitral valves or tricuspid valves. MCSF-1 expression in mitral valves was further increased while remained unchanged in tricuspid valve after 5 x 10(6) CFU S. aureus injection compared to that in 5 x 10(4) CFU S. aureus injection group.
CONCLUSIONHigh dose bacterial invasion and heart valves lesion were the main factors for inducing infective endocarditis. Development of infective endocarditis was associated with valve MCSF-1/c-fms expression changes in this rabbit model.
Animals ; Endocarditis, Bacterial ; metabolism ; microbiology ; Macrophage Colony-Stimulating Factor ; biosynthesis ; genetics ; Mitral Valve ; metabolism ; RNA, Messenger ; biosynthesis ; Rabbits ; Receptor, Macrophage Colony-Stimulating Factor ; biosynthesis ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Staphylococcal Infections ; metabolism ; microbiology ; Staphylococcus aureus
7.Influence of MicroRNA-382 on Biological Properties of Human Umbilical Cord-Derived Mesenchymal Stem Cells.
Jun-Jie CUI ; Ying CHI ; Xin YANG ; Yu-Yan SHEN ; Zhao WANG ; Su-Dong ZHANG ; Li-Ning ZHANG ; Li LIU ; Shi-Hong LU ; Ming-Zhe HAN ; Si-Zhou FENG
Journal of Experimental Hematology 2016;24(3):852-857
OBJECTIVETo investigate the effect of microRNA-382 (miR-382) on the biological properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSC).
METHODSThe mimics and inhibitor of miR-382 were transfected into hUC-MSC with lipo2000. Inverted microscopy was used to observe the morphology change of hUC-MSC. The proliferation of hUC-MSC was detected by CCK-8. Oil red O and alizarin red staining were applied to assess the adipogenic and osteogenic differentiation of hUC-MSC. Cetylpyridinium chloride was used to the quantitative analysis of osteogenic differentiation. The expression of Runx2 and some cytokines were detected by RT-PCR.
RESULTSmiR-382 did not influence the morphology, proliferation and adipogenic differentiation of hUC-MSC miR-382 inhibited the expression of Runx2, thus could inhibit the osteogenesis of hUC-MSC, being confirmed by alizarin red stain; miR-382 could influence the expression of key cytokines secreted from hUC-MSC, such as IL-6, IDO1, G-CSF, M-CSF, GM-CSF.
CONCLUSIONmiR-382 decreases the expression of Runx2 and inhibites the osteogenesis of hUC-MSC. In addition, it also affects the expression of some key cytokines secreted from hUC-MSC.
Cell Differentiation ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Granulocyte Colony-Stimulating Factor ; metabolism ; Granulocyte-Macrophage Colony-Stimulating Factor ; metabolism ; Humans ; Indoleamine-Pyrrole 2,3,-Dioxygenase ; metabolism ; Interleukin-6 ; metabolism ; Macrophage Colony-Stimulating Factor ; metabolism ; Mesenchymal Stromal Cells ; cytology ; MicroRNAs ; metabolism ; Osteogenesis ; Transfection ; Umbilical Cord ; cytology
8.Viperin Deficiency Promotes Polarization of Macrophages and Secretion of M1 and M2 Cytokines.
John EOM ; Jihye YOO ; Jeong Jin KIM ; Jae Bong LEE ; Wanho CHOI ; Chae Gyu PARK ; Jun Young SEO
Immune Network 2018;18(4):e32-
Viperin is a multifunctional protein that was first identified in human primary macrophages treated with interferon-γ and in human fibroblasts infected with human cytomegalovirus. This protein plays a role as an anti-viral protein and a regulator of cell signaling pathways or cellular metabolism when induced in a variety of cells such as fibroblasts, hepatocytes and immune cells including T cells and dendritic cells. However, the role of viperin in macrophages is unknown. Here, we show that viperin is basally expressed in murine bone marrow cells including monocytes. Its expression is maintained in bone marrow monocyte-derived macrophages (BMDMs) depending on macrophage colony-stimulating factor (M-CSF) treatment but not on granulocyte-macrophage colony-stimulating factor (GM-CSF) treatment. In wild type (WT) and viperin knockout (KO) BMDMs differentiated with M-CSF or G-MCSF, there are little differences at the gene expression levels of M1 and M2 macrophage markers such as inducible nitric oxide synthase (iNOS) and arginase-1, and cytokines such as IL-6 and IL-10, indicating that viperin expression in BMDMs does not affect the basal gene expression of macrophage markers and cytokines. However, when BMDMs are completely polarized, the levels of expression of macrophage markers and secretion of cytokines in viperin KO M1 and M2 macrophages are significantly higher than those in WT M1 and M2 macrophages. The data suggest that viperin plays a role as a regulator in polarization of macrophages and secretion of M1 and M2 cytokines.
Bone Marrow
;
Bone Marrow Cells
;
Cytokines*
;
Cytomegalovirus
;
Dendritic Cells
;
Fibroblasts
;
Gene Expression
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Hepatocytes
;
Humans
;
Interleukin-10
;
Interleukin-6
;
Macrophage Colony-Stimulating Factor
;
Macrophages*
;
Metabolism
;
Monocytes
;
Nitric Oxide Synthase Type II
;
T-Lymphocytes
9.Expression of G-CSF and GM-CSF receptors on CD34 positive cells in aplastic anemia and myelodysplastic syndrome patients and its significance.
Hong-Zhi XU ; Ai LI ; Yuan YU ; Jian-Feng LI ; Xin LIU ; Xiang-Hua WANG ; Xin WANG ; Gong-Li XU
Journal of Experimental Hematology 2008;16(6):1308-1311
This study was aimed to detect the ratio of CD34+ cells in bone marrow mononuclear cells (BMMNCs) and the expression rate of G(M)-CSFR on CD34+ cells in bone marrow of the patients with aplastic anemia (AA) and myelodysplastic syndrome (MDS). The ratio of CD34+ cells in BMMNCs and the expression rate of G(M)-CSFR on cells of 27 AA patients, 45 MDS patients and 20 controls were detected by flow cytometry (FCM). The results showed that the ratio of CD34+ cells in BMMNCs of AA patients reduced and was significantly different from controls (p<0.05), the ratio of CD34+ cells in MDS patients elevated and was significantly different from controls (p<0.05). Compared with controls and MDS-RA patients, the ratio of CD34+ cells in MDS-RAEB patients significantly elevated (p<0.05), but there was no significant difference between MDS-RA patients and controls (p>0.05). The ratio of CD34+ cells in MDS-RA patients was significantly higher than that in AA patients (p<0.05). There was no significant difference in expression rate of G-CSFR on CD34+ cells between AA patients and controls, MDS patients and controls, AA patients and MDS patients, MDS-RA patients and MDS-RAEB patients (p>0.05). The expression rate of GM-CSFR in MDS patients was significantly higher than that in AA patients and controls (p<0.05), but there was no significant difference between AA patients and controls, MDS-RA patients and MDS-RAEB patients (p>0.05). In AA patients, the ratio of CD34+ cells in BMMNCs was less than 0.1% accounts for 6/8 SAA patients, compared with 2/19 in CAA (p<0.05). There was no correlation between the expression rate of either G-CSFR or GM-CSFR and neutrophil count at diagnosis (r=0.058 and r=0.044). In MDS patients, there was no correlation between bone marrow CD34+ cells ratio and peripheral neutrophil count at diagnosis (r=-0.335). And there was no correlation between the expression of either G-CSFR or GM-CSFR and neutrophil count on diagnosis (r=0.064 and r=0.051). It is concluded the detection of CD34+ cells and their surface expression rate of G(M)-CSFR in AA and MDS is useful in diagnosis and differential diagnosis of these two diseases.
Adult
;
Anemia, Aplastic
;
metabolism
;
Antigens, CD34
;
immunology
;
Bone Marrow Cells
;
cytology
;
immunology
;
metabolism
;
Case-Control Studies
;
Female
;
Flow Cytometry
;
Humans
;
Male
;
Middle Aged
;
Myelodysplastic Syndromes
;
metabolism
;
Receptors, Granulocyte Colony-Stimulating Factor
;
metabolism
;
Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
;
metabolism
10.Regulation of colony-stimulating factor 1 receptor inhibitor pexidartinib on the senescence of mouse bone marrow-derived macrophages stimulated by lipopolysaccharide.
Tian Jiao XIAO ; Jie ZHANG ; Jia Bing KANG ; Li LI ; Ji Fan ZHAN ; Yan WEI ; Ai TIAN
Chinese Journal of Stomatology 2023;58(6):575-583
Objective: To investigate the effects of colony-stimulating factor 1 receptor (CSF-1R) inhibitor pexidartinib (PLX3397) on the senescence of bone marrow-derived macrophages (BMDM) stimulated by lipopolysaccharide (LPS). Methods: BMDM were isolated and cultured from femurs and tibiae of 10 male C57BL/6 mice aged 6-8 weeks (obtained from Laboratory Animal Center of Guizhou Medical University). They were divided into blank control group, LPS group (treated with 1 μg/ml LPS for 24 h) as well as low, medium and high concentration PLX3397 pretreatment groups (treated with 100, 500 and 1 000 nmol/L PLX3397 for 4 h respectively followed by 1 μg/ml LPS for 24 h). The corresponding markers of macrophages were detected by flow cytometry. Cell viability was detected by cell counting kit-8 and cellular senescence was detected by senescence-associated-β-galactosidase (SA-β-gal) staining. Meanwhile, protein expressions of cycle-dependent kinase inhibitor p16, p21 and CSF-1R were detected by Western blotting, and the expressions of p16 and p21 were detected by intracellular immunofluorescence. Real-time fluorescence quantitative PCR (RT-qPCR) was used to investigate the mRNA levels of senescence-associated secretory phenotype (SASP) genes including interleukin (IL), IL-1β, chemokine-1/10 (CXCL-1/10), matrix metalloproteinase-8 (MMP-8), and transforming growth factor-β (TGF-β). Results: The rate of SA-β-gal positive staining in medium and high concentration PLX3397 pretreatment groups [(39.33±4.93)% and (36.33±3.06)% respectively] were significantly downregulated compared with LPS group [(52.00±3.00)%] (P=0.020, P=0.005). The expression of CSF-1R protein in low, medium and high concentration PLX3397 pretreatment groups were (0.74±0.18, 0.61±0.07, 0.54±0.06), all of which were significantly lower than that in LPS group (1.16±0.08) (P=0.013, P=0.002, P<0.001). The expression levels of CSF-1R mRNA in low, medium and high concentration PLX3397 pretreatment groups (1.04±0.06, 0.90±0.05, 1.18±0.08) showed similar trend (2.90±0.25) (P<0.001). The average fluorescence intensity of p16 in all PLX3397 pretreatment groups were 49.76±3.65, 48.21±1.72, 47.99±1.26 respectively, which were significantly lower than that in LPS group (66.88±5.85) (P=0.001, P<0.001, P<0.001). The average fluorescence intensity of p21 in medium and high concentration PLX3397 pretreatment groups were (34.43±3.62, 30.13±0.86), significantly lower than that in LPS group (46.82±5.33) (P=0.043, P=0.007). The expression of p16 protein in low, medium and high concentration PLX3397 pretreatment groups (0.56±0.04, 0.55±0.04, 0.35±0.19) were significantly lower than that in LPS group (0.98±0.10) (P=0.003, P=0.002, P<0.001), as well the expression of p21 protein (0.69±0.20, 0.42±0.08, 0.26±0.14) (P=0.032, P=0.002, P<0.001). According to the results of RT-qPCR, the expressions of IL-6, IL-1β, CXCL-1, CXCL-10 and MMP-8 in PLX3397 pretreatment groups were significantly lower than those in LPS group (P<0.001), while the expression of TGF-β increased (P<0.001). Conclusions: LPS could induce the cell senescence, increase the secretion of SASP and aggravate local inflammation by activating the CSF-1R on the cell surface of bone marrow-derived macrophages. CSF-1R inhibitor PLX3397 might attenuate CSF-1R activation associated with LPS and inhibit the senescence of bone marrow-derived macrophages induced by LPS.
Mice
;
Animals
;
Male
;
Lipopolysaccharides/pharmacology*
;
Macrophage Colony-Stimulating Factor/metabolism*
;
Matrix Metalloproteinase 8/metabolism*
;
Mice, Inbred C57BL
;
Macrophages
;
Transforming Growth Factor beta/metabolism*
;
RNA, Messenger/metabolism*