1.Progress in the Study of Spindle Assembly Checkpoint in Lung Cancer.
Xinchen QIN ; Yao ZHANG ; Haijie YU ; Lijuan MA
Chinese Journal of Lung Cancer 2023;26(4):310-318
Spindle assembly checkpoint (SAC) is a protective mechanism for cells to undergo accurate mitosis. SAC prevented chromosome segregation when kinetochores were not, or incorrectly attached to microtubules in the anaphase of mitosis, thus avoiding aneuploid chromosomes in daughter cells. Aneuploidy and altered expression of SAC component proteins are common in different cancers, including lung cancer. Therefore, SAC is a potential new target for lung cancer therapy. Five small molecule inhibitors of monopolar spindle 1 (MPS1), an upstream component protein of SAC, have entered clinical trials. This article introduces the biological functions of SAC, summarizes the abnormal expression of SAC component proteins in various cancers and the research progress of MPS1 inhibitors, and expects to provide a reference for the future development of lung cancer therapeutic strategies targeting SAC components.
.
Humans
;
Cell Cycle Proteins/metabolism*
;
Spindle Apparatus/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
M Phase Cell Cycle Checkpoints/genetics*
;
Lung Neoplasms/metabolism*
2.Spindle assembly checkpoint complex-related genes TTK and MAD2L1 are over-expressed in lung adenocarcinoma: a big data and bioinformatics analysis.
Zhu LIU ; Zeqin GUO ; Lili LONG ; Yanpei ZHANG ; Yuwen LU ; Dehua WU ; Zhongyi DONG
Journal of Southern Medical University 2020;40(10):1422-1431
OBJECTIVE:
To screen the key genes related to the prognosis of lung adenocarcinoma through big data analysis and explore their clinical value and potential mechanism.
METHODS:
We analyzed GSE18842, GSE27262, and GSE33532 gene expression profile data obtained from the Gene Expression Omnibus (GEO). Bioinformatics methods were used to screen the differentially expressed genes in lung adenocarcinoma tissues and KEGG and GO enrichment analysis was performed, followed by PPI interaction network analysis, module analysis, differential expression analysis, and prognosis analysis. The expressions of MAD2L1 and TTK by immunohistochemistry were verified in 35 non-small cell lung cancer specimens and paired adjacent tissues.
RESULTS:
We identified a total of 256 genes that showed significant differential expressions in lung adenocarcinoma, including 66 up-regulated and 190 down-regulated genes. Thirty-two up-regulated core genes were screened by functional analysis, and among them 29 were shown to significantly correlate with a poor prognosis of patients with lung adenocarcinoma. All the 29 genes were highly expressed in lung adenocarcinoma tissues compared with normal lung tissues and were mainly enriched in cell cycle pathways. Seven of these key genes were closely related to the spindle assembly checkpoint (SAC) complex and responsible for regulating cell behavior in G2/M phase. We selected SAC-related proteins TTK and MAD2L1 to test their expressions in clinical tumor samples, and detected their overexpression in lung adenocarcinoma tissues as compared with the adjacent tissues.
CONCLUSIONS
Seven SAC complex-related genes, including TTK and MAD2L1, are overexpressed in lung adenocarcinoma tissues with close correlation with the prognosis of the patients.
Adenocarcinoma of Lung/genetics*
;
Big Data
;
Cell Cycle Proteins/genetics*
;
Computational Biology
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Lung Neoplasms/genetics*
;
M Phase Cell Cycle Checkpoints
;
Mad2 Proteins/genetics*
;
Protein-Serine-Threonine Kinases/genetics*
;
Protein-Tyrosine Kinases/genetics*
3.Inhibitory Effect of Melanoma Differentiation Associated Gene-7/Interleukin-24 on Invasion In Vitro of Human Melanoma Cancer Cells.
Bi Wen LIN ; Ze Long JIAO ; Jian Feng FAN ; Liang PENG ; Lei LI ; Zi Gang ZHAO ; Xiang Yu DING ; Heng Jin LI
Journal of Korean Medical Science 2013;28(6):833-839
The acquisition of metastasis potential is a critical point for malignant tumors. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a potential tumor suppress gene and frequently down-regulated in malignant tumors. It has been implicated that overexpression of MDA-7 led to proliferation inhibition in many types of human tumor. Invasion is an important process which is potential to promote tumor metastasis. However, the role and potential molecular mechanism of mda-7/IL-24 to inhibit the invasion of human melanoma cancer is not fully clear. In this report, we identified a solid role for mda-7/IL-24 in invasion inhibition of human melanoma cancer LiBr cells, including decreasing of adhesion and invasion in vitro, blocking cell cycle, down-regulating the expression of ICAM-1, MMP-2/9, CDK1, the phosphorylation of ERK and Akt, NF-kappaB and AP-1 transcription activity. Meanwhile, there was an increased expression of PTEN in mda-7/IL-24 over-expression LiBr cells. Our results demonstrated that mda-7/IL-24 is a potential invasion suppress gene, which inhibits the invasion of LiBr cells by the down-regulation of ICAM-1, MMP-2/9, PTEN, and CDK1 expression. The molecular pathways involved were the MAPK/ERK, PI3K-Akt, NF-kappaB, and AP-1. These findings suggest that mda-7/IL-24 may be used as a possible therapeutic strategy for human melanoma cancer.
CDC2 Protein Kinase/genetics/metabolism
;
Cell Line, Tumor
;
Cell Movement
;
Down-Regulation
;
G2 Phase Cell Cycle Checkpoints
;
Humans
;
Intercellular Adhesion Molecule-1/genetics/metabolism
;
Interleukins/genetics/*metabolism
;
M Phase Cell Cycle Checkpoints
;
Matrix Metalloproteinase 2/genetics/metabolism
;
Matrix Metalloproteinase 9/genetics/metabolism
;
Melanoma/metabolism/pathology
;
NF-kappa B/genetics/metabolism
;
PTEN Phosphohydrolase/genetics/metabolism
;
Phosphorylation
;
Proto-Oncogene Proteins c-akt/genetics/metabolism
;
Transcription Factor AP-1/genetics/metabolism
;
Up-Regulation
4.Knockdown of Bcl-xL Enhances Growth-Inhibiting and Apoptosis-Inducing Effects of Resveratrol and Clofarabine in Malignant Mesothelioma H-2452 Cells.
Yoon Jin LEE ; In Sung HWANG ; Yong Jin LEE ; Chang Ho LEE ; Sung Ho KIM ; Hae Saeon NAM ; Young Jin CHOI ; Sang Han LEE
Journal of Korean Medical Science 2014;29(11):1464-1472
Mcl-1 and Bcl-xL, key anti-apoptotic proteins of the Bcl-2 family, have attracted attention as important molecules in the cell survival and drug resistance. In this study, we investigated whether inhibition of Bcl-xL influences cell growth and apoptosis against simultaneous treatment of resveratrol and clofarabine in the human malignant mesothelioma H-2452 cells. Resveratrol and clofarabine decreased Mcl-1 protein levels but had little effect on Bcl-xL levels. In the presence of two compounds, any detectable change in the Mcl-1 mRNA levels was not observed in RT-PCR analysis, whereas pretreatment with the proteasome inhibitor MG132 led to its accumulation to levels far above basal levels. The knockdown of Bcl-xL inhibited cell proliferation with cell accumulation at G2/M phase and the appearance of sub-G0/G1 peak in DNA flow cytometric assay. The suppression of cell growth was accompanied by an increase in the caspase-3/7 activity with the resultant cleavages of procaspase-3 and its substrate poly (ADP-ribose) polymerase, and increased percentage of apoptotic propensities in annexin V binding assay. Collectively, our data represent that the efficacy of resveratrol and clofarabine for apoptosis induction was substantially enhanced by Bcl-xL-lowering strategy in which the simultaneous targeting of Mcl-1 and Bcl-xL could be a more effective strategy for treating malignant mesothelioma.
Adenine Nucleotides/*pharmacology
;
Antimetabolites, Antineoplastic/*pharmacology
;
Apoptosis/*drug effects
;
Arabinonucleosides/*pharmacology
;
Caspase 3/metabolism
;
Caspase 7/metabolism
;
Cell Line, Tumor
;
Cell Proliferation/drug effects
;
G2 Phase Cell Cycle Checkpoints/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Leupeptins/pharmacology
;
Lung Neoplasms/metabolism/pathology
;
M Phase Cell Cycle Checkpoints/drug effects
;
Mesothelioma/metabolism/pathology
;
Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors/genetics/metabolism
;
RNA Interference
;
RNA, Messenger/metabolism
;
RNA, Small Interfering/metabolism
;
Stilbenes/*pharmacology
;
bcl-X Protein/antagonists & inhibitors/*genetics/*metabolism