1.Development and External Validation of a Deep Learning Algorithm for Prognostication of Cardiovascular Outcomes
In Jeong CHO ; Ji Min SUNG ; Hyeon Chang KIM ; Sang Eun LEE ; Myeong Hun CHAE ; Maryam KAVOUSI ; Oscar L RUEDA-OCHOA ; M Arfan IKRAM ; Oscar H FRANCO ; James K MIN ; Hyuk Jae CHANG
Korean Circulation Journal 2020;50(1):72-84
BACKGROUND AND OBJECTIVES:
We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression.
METHODS:
Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): a Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included.
RESULTS:
Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886–0.907) in men and 0.921 (0.908–0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860–0.876) in men and 0.889 (0.876–0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824–0.897) in men and 0.867 (0.830–0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women).
CONCLUSIONS
A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02931500
2.Development and External Validation of a Deep Learning Algorithm for Prognostication of Cardiovascular Outcomes
In Jeong CHO ; Ji Min SUNG ; Hyeon Chang KIM ; Sang Eun LEE ; Myeong Hun CHAE ; Maryam KAVOUSI ; Oscar L RUEDA-OCHOA ; M Arfan IKRAM ; Oscar H FRANCO ; James K MIN ; Hyuk Jae CHANG
Korean Circulation Journal 2020;50(1):72-84
BACKGROUND AND OBJECTIVES: We aim to explore the additional discriminative accuracy of a deep learning (DL) algorithm using repeated-measures data for identifying people at high risk for cardiovascular disease (CVD), compared to Cox hazard regression.METHODS: Two CVD prediction models were developed from National Health Insurance Service-Health Screening Cohort (NHIS-HEALS): a Cox regression model and a DL model. Performance of each model was assessed in the internal and 2 external validation cohorts in Koreans (National Health Insurance Service-National Sample Cohort; NHIS-NSC) and in Europeans (Rotterdam Study). A total of 412,030 adults in the NHIS-HEALS; 178,875 adults in the NHIS-NSC; and the 4,296 adults in Rotterdam Study were included.RESULTS: Mean ages was 52 years (46% women) and there were 25,777 events (6.3%) in NHIS-HEALS during the follow-up. In internal validation, the DL approach demonstrated a C-statistic of 0.896 (95% confidence interval, 0.886–0.907) in men and 0.921 (0.908–0.934) in women and improved reclassification compared with Cox regression (net reclassification index [NRI], 24.8% in men, 29.0% in women). In external validation with NHIS-NSC, DL demonstrated a C-statistic of 0.868 (0.860–0.876) in men and 0.889 (0.876–0.898) in women, and improved reclassification compared with Cox regression (NRI, 24.9% in men, 26.2% in women). In external validation applied to the Rotterdam Study, DL demonstrated a C-statistic of 0.860 (0.824–0.897) in men and 0.867 (0.830–0.903) in women, and improved reclassification compared with Cox regression (NRI, 36.9% in men, 31.8% in women).CONCLUSIONS: A DL algorithm exhibited greater discriminative accuracy than Cox model approaches.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02931500
Adult
;
Artificial Intelligence
;
Cardiovascular Diseases
;
Cohort Studies
;
Female
;
Follow-Up Studies
;
Humans
;
Insurance, Health
;
Learning
;
Male
;
Mass Screening
;
National Health Programs