1.Effects of the Prenatal Administration of Tetanus Toxoid on the Sociability and Explorative Behaviors of Rat Offspring: A Preliminary Study
Eda SÜNNETÇI ; Ferit DURANKUŞ ; Yakup ALBAYRAK ; Mümin Alper ERDOĞAN ; Özüm ATASOY ; Oytun ERBAŞ
Clinical Psychopharmacology and Neuroscience 2021;19(1):84-92
Objective:
Autism spectrum disorder (ASD) is a severely disabling psychiatric disease characterized by impairments in communication and social skills. Although efforts have been made to explore the etiology of ASD, its pathophysiology remains unclear. This issue is rendered more challenging by confounding data about the effects of vaccination on disease etiology. In this study, therefore, we investigated the neurodevelopmental effects of maternal tetanus toxoid administration on rat offspring. We hypothesized that the vaccine affects the sociability and preference for social novelty of rat offspring as well as the production of immunological and neurotrophic factors, including tumor necrosis factor-alfa (TNF-α), neuregulin-1 (NRG-1), neuron growth factor (NGF), and oxytocin.
Methods:
The study involved 12 female and 4 male adult Sprague−Dawley rats (238 ± 10 g), which were assigned to two groups. Group 1 (control group) was given 0.5 ml of normal saline (0.9% NaCl) on the 10th day of pregnancy, whereas Group 2 (experimental group) was administered 0.5 ml of tetanus vaccine (tetanus toxoid, 40 IU).
Results:
Maternal tetanus toxoid administration exerted beneficial effects on the sociability and explorative behaviors of the rats. The brain tissue levels of TNF-α, NGF, NRG-1, and oxytocin were higher in the experimental group than those among the controls. All these significant differences were found in both the male and female rats.
Conclusion
This study is the first to demonstrate the advantages of tetanus toxoid administration in relation to the sociability and explorative behaviors of rat offspring. The results showed that the vaccine also influences NRG-1, neuregulin, and oxytocin production.
2.Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model
Gökhan GÜRKAN ; Özüm ATASOY ; Nilsu ÇINI ; İbrahim Halil SEVER ; Bahattin ÖZKUL ; Gökhan YAPRAK ; Cansın ŞIRIN ; Yiğit UYANIKGIL ; Ceren KIZMAZOĞLU ; Mümin Alper ERDOĞAN ; Oytun ERBAŞ
Journal of Korean Neurosurgical Society 2023;66(5):511-524
Objective:
: This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically.
Methods:
: This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals.
Results:
: G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels.
Conclusion
: In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.