1.Intercellular Lipid Mediators and GPCR Drug Discovery.
Biomolecules & Therapeutics 2013;21(6):411-422
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Drug Discovery*
;
Fatty Acids, Nonesterified
;
Homeostasis
;
Ligands
;
Lysophosphatidylcholines
;
Lysophospholipids
;
Receptors, G-Protein-Coupled
;
Sphingosine
;
Fingolimod Hydrochloride
2.Function and biological activities of the autotaxin-LPA axis.
Zong-Wei LI ; Ya-Rui ZHAO ; Chao ZHAO ; Rong FU ; Zhuo-Yu LI
Acta Physiologica Sinica 2011;63(6):601-610
Autotaxin (ATX), a member of nucleotide pyrophosphatase/phosphodiesterase (NPP) family, is also named as phosphodiesterase Iα (PD-Iα) or NPP2. ATX is the unique member among the NPPs that can function as a lysophospholipase D (lysoPLD), converting lysophosphatidylcholine into lysophosphatidic acid (LPA). LPA acts on specific G-protein-coupled receptors to elicit a wide range of cellular response, including cell proliferation, cell migration and cell contraction, etc. As the major LPA-producing phospholipase, many ATX's features and functions are dependent on the production of LPA. ATX and LPA together form the ATX-LPA functional axis. The present review summarizes the current progress in function and biological activities of ATX-LPA axis.
Animals
;
Cell Movement
;
physiology
;
Cell Proliferation
;
Humans
;
Lysophosphatidylcholines
;
metabolism
;
Lysophospholipids
;
metabolism
;
physiology
;
Phospholipases
;
metabolism
;
Phosphoric Diester Hydrolases
;
metabolism
;
physiology
;
Receptors, G-Protein-Coupled
;
physiology
4.Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells.
Xiang-Nan WU ; Yuan-Yuan MA ; Zhi-Chao HAO ; Hang WANG
West China Journal of Stomatology 2020;38(3):324-329
Lysophosphatidic acid (LPA) is a small phospholipid that is present in all eukaryotic tissues and blood plasma. As an extracellular signaling molecule, LPA mediates many cellular functions by binding to six known G protein-coupled receptors and activating their downstream signaling pathways. These functions indicate that LPA may play important roles in many biological processes that include organismal development, wound healing, and carcinogenesis. Recently, many studies have found that LPA has various biological effects in different kinds of bone cells. These findings suggest that LPA is a potent regulator of bone development and remodeling and holds promising application potential in bone tissue engineering. Here, we review the recent progress on the biological regulatory function of LPA in bone tissue cells.
Biological Phenomena
;
Bone and Bones
;
Lysophospholipids
;
Receptors, Lysophosphatidic Acid
5.Comparison of total plasma lysophosphatidic acid and serum CA-125 as a tumor marker in the diagnosis and follow-up of patients with epithelial ovarian cancer.
Tugan BESE ; Merve BARBAROS ; Elif BAYKARA ; Onur GURALP ; Salih CENGIZ ; Fuat DEMIRKIRAN ; Cevdet SANIOGLU ; Macit ARVAS
Journal of Gynecologic Oncology 2010;21(4):248-254
OBJECTIVE: To evaluate the role of lysophosphatidic acid (LPA) as a tumor marker in diagnosis and follow-up of patients with epithelial ovarian cancer. METHODS: Eighty-seven epithelial ovarian cancer patients, 74 benign ovarian tumor patients, and 50 healthy women were enrolled in the study. Twenty-nine of 87 epithelial ovarian cancer patients were followed up for 6 cycles of paclitaxel-carboplatin chemotherapy. CA-125 and total plasma LPA levels were measured preoperatively and before each chemotherapy cycle. RESULTS: Preoperative total plasma LPA and serum CA-125 levels were significantly higher in patients with epithelial ovarian cancer compared to patients with benign ovarian tumors and healthy women. Cut-off value for LPA was determined as 1.3 micromol/L and sensitivity, specificity, positive predictive value and negative predictive value were 95%, 92%, 95% and 92%, respectively. Mean total plasma LPA level of 29 patients who received chemotherapy was 7.21+/-6.63 micromol/L preoperatively and 6.84+/-6.34 micromol/L, 6.34+/-5.92 micromol/L, 6.14+/-5.79 micromol/L, 5.86+/-5.68 micromol/L, 5.23+/-5.11 micromol/L and 5.21+/-5.32 micromol/L in measurements held just before the 1st, 2nd, 3rd, 4th, 5th and 6th chemotherapy cycles, respectively (ANOVA, p=0.832). Total plasma LPA levels decreased slightly with chemotherapy administration and there was a weak negative correlation (Spearman, rs=-0.151, p=0.034), compared to a significant negative correlation in CA-125 (Spearman, rs=-0.596, p<0.001). CONCLUSION: LPA is a better biomarker for diagnosis of epithelial ovarian cancer compared to CA-125. However, measurement of total plasma LPA levels during chemotherapy administration have no superiority to the serum CA-125 levels.
Female
;
Follow-Up Studies
;
Humans
;
Lysophospholipids
;
Neoplasms, Glandular and Epithelial
;
Ovarian Neoplasms
;
Plasma
;
Sensitivity and Specificity
6.Influence of S1PR5 Defect on the Lymphocyte Distribution in Mice.
Zhen-Yang GU ; Xiao-Li ZHAO ; Nan YAN ; Li WANG ; Fei-Yang WANG ; Li-Li WANG ; Chun-Ji GAO
Journal of Experimental Hematology 2016;24(4):1168-1172
BACKGROUNDThe sphingosine 1-phosphate (S1P) receptors (S1PRs) are a group of G protein-coupled receptors expressed on the surface of lymphocytes. The interaction between S1P and S1PRs plays a significant role in the migration and distribution of lymphocytes.
OBJECTIVETo investigate the influence of S1PR5 defect on the lymphocytes distribution in mice.
METHODSThe distribution of different subsets of lymphocyte in the mice with S1PR5 defect was examined by flow cytometry.
RESULTSCompared with wild type mice, the number of NK cells in the peripheral blood (PB) and spleen (SP) from the mice with S1PR5 defect decreased very significantly 〔PB: 6.4±0.45% vs 2.2±0.47(P<0.01,n=3);SP: 3.0±0.91% vs 0.68±0.14%(P<0.05,n=3)〕. However, the NK cell number in the bone marrow (BM) and lymphonodes (LN) of the mice with S1PR5 defect increased very significantly 〔BM: 0.97±0.20 % vs 2.6±0.35% (P<0.01, n=3); LN: 0.35±0.16% vs 1.7±0.15% (P<0.01, n=3)〕. The percentages of CD3(+) lymphocyte in peripheral blood, spleen and lymph node were not statistically significantly different between these 2 types of mice 〔PB: 17.3±7.9% vs 17.0±4.6% (P>0.05, n=3); SP: 33.0±6.0% vs 27.4±1.8% (P>0.05, n=3); LN: 42.3±10.7% vs 51.2±2.7% (P>0.05, n=3)〕.
CONCLUSIONS1PR5 defect can significantly influence the NK cell distribution.
Animals ; Bone Marrow ; Cell Count ; Flow Cytometry ; Lymphocytes ; Lysophospholipids ; Mice ; Receptors, Lysosphingolipid ; Sphingosine ; analogs & derivatives
7.Role of orphan G protein-coupled receptor 55 in diabetic gastroparesis in mice.
Xu-Hong LIN ; ; Dan-Dan WEI ; Hui-Chao WANG ; Bin WANG ; Chun-Yang BAI ; Ya-Qiang WANG ; Guo-En LI ; Hui-Ping LI ; Xue-Qun REN
Acta Physiologica Sinica 2014;66(3):332-340
The aim of the present study was to explore the role of orphan G protein-coupled receptor 55 (GPR55) in diabetic gastroparesis (DG). Streptozotocin (STZ) was used to mimic the DG model, and the body weight and blood glucose concentration were tested 4 weeks after STZ injection (i.p.). Electrogastrogram and phenolsulfonphthalein test were used for detecting gastric emptying. Motilin (MTL), gastrin (GAS), vasoactive intestinal peptide (VIP), and somatostatin (SS) levels in plasma were determined using radioimmunology. Real-time PCR and Western blot were applied to identify the expression of GPR55 in gastric tissue, and immunohistochemistry was used to detect the distribution. The effect of lysophosphatidylinositol (LPI), an agonist of GPR55, was observed. STZ mice showed increased blood glucose concentration, lower body weight, decreased amplitude of slow wave, and delayed gastric emptying. LPI antagonized these effects of STZ. Compared to the control group, STZ caused significant decreases of MTL and GAS levels (P < 0.01), as well as increases of SS and VIP levels (P < 0.01). The changes of these hormones induced by STZ were counteracted when using LPI. GPR55 located in mice stomach, and it was up-regulated in DG. Although LPI showed no effects on the distribution and expression of GPR55 in normal mice, it could inhibit STZ-induced GPR55 up-regulation. These results suggest GPR55 is involved in the regulation of gastric movement of DG, and may serve as a new target of DG treatment. LPI, an agonist of GPR55, can protect against STZ-induced DG, and the mechanism may involve the change of GPR55 expression and modification of gastrointestinal movement regulating hormones.
Animals
;
Diabetes Mellitus, Experimental
;
metabolism
;
pathology
;
Gastroparesis
;
metabolism
;
pathology
;
Lysophospholipids
;
pharmacology
;
Mice
;
Receptors, Cannabinoid
;
metabolism
8.Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo.
Geng-Qian ZHANG ; Zheng LIANG ; Xiao-Jia ZHANG
Acta Physiologica Sinica 2014;66(2):169-174
Sphingosine-1-phosphate (S1P) has been demonstrated to be a mediator and marker of heart diseases. We hypothesized that the expression of S1P receptors is involved in the S1P-mediated cardioprotection in vivo and may serve as a biomarker of ischemic heart disease. In vivo models of myocardial ischemia (MI) and ischemia-reperfusion (IR) were established by ligation of the left anterior descending artery (LAD) of rat heart, the mRNA expressions of S1PR1-3 were detected using real time PCR at different time intervals after ischemia (LAD for 15 min, 30 min, and 1 h) and IR. The results showed that mRNA expression of S1PR3, but not S1PR1 and S1PR2, increased greatly after IR. No statistical difference was found in any of the three S1P receptors after MI within 1 h. Regarding the studies of lipid concentration changes in myocardiopathy, we conclude that S1P receptors are not early response biomarkers for MI. There are different mechanisms when S1P plays a protection role in heart during MI and IR. The cooperation of lipid content and S1P receptor expression appears to form a regulation network during MI and IR.
Animals
;
Lysophospholipids
;
physiology
;
Myocardial Reperfusion Injury
;
physiopathology
;
Rats
;
Receptors, Lysosphingolipid
;
physiology
;
Sphingosine
;
analogs & derivatives
;
physiology
9.Research advances of the roles of sphingosine-1-phosphate in acute lung injury.
Meng Yan WANG ; Pei CUI ; Hai Ming XIN
Chinese Journal of Burns 2022;38(5):496-500
Sphingosine-1-phosphate (S1P) is the main metabolite produced in the process of phospholipid metabolism, which can promote proliferation, migration, and apoptosis of cells, and maintain the barrier function of vascular endothelium. The latest researches showed that S1P can alleviate acute lung injury (ALI) and the inflammation caused by ALI, while the dosage of S1P is still needed to be considered. Mesenchymal stem cells (MSCs) have been a emerging therapy with potential therapeutic effects on ALI because of their characteristics of self-replication and multi-directional differentiation, and their advantages in hematopoiesis, immune regulation, and tissue repair. S1P can promote differentiation of MSCs and participate in immune regulation, while MSCs can regulate the homeostasis of S1P in the body. The synergistic effect of S1P and MSC provides a new treatment method for ALI. This article reviews the production and biological function of S1P, receptor and signal pathway of S1P, the therapeutic effects of S1P on ALI, and the research advances of S1P combined with MSCs in the treatment of ALI, aiming to provide theoretical references for the development of S1P targeted drugs in the treatment of ALI and the search for new combined treatment schemes for ALI.
Acute Lung Injury
;
Animals
;
Lung/metabolism*
;
Lysophospholipids/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Sphingosine/pharmacology*
10.Prolonged ERK Activation of S1P on B16 Melanoma Cells.
Hyun Sook LEE ; Gwang Seong CHOI ; Jeong Hyun SHIN
Korean Journal of Dermatology 2008;46(6):769-775
BACKGROUND: The bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), was reported to induce apoptosis of some cancer cells and neurons, although it is generally known to exert mitogenic and antiapoptotic effects. Recently, it was described that S1P induced time- and dose-dependent apoptosis in B16 melanoma cells, that was not associated with cell membrane receptors for S1P but ERK and caspase-3 activation. OBJECTIVE: In this study, we aimed to investigate the exact mechanism of apoptosis by S1P using cultured B16 melanoma cells with caspase activity assay and Western blot assays for p-ERK, Fas, Bcl-2 family and cytochrome C proteins. METHODS: We cultured B16 melanoma cells and treated S1P with various concentrations and time. Caspases (3, 8, and 9) activity assay and Western blot assays for phosphor-ERK, Fas, Bcl-2 family and cytochrome C proteins were performed. RESULTS: We observed S1P induced caspase-3, -8, and -9 activations in our results. S1P also induced prolonged activation of ERK in 72 hours. S1P concomitantly increased Bcl-2 protein expression in the early 12 hours of the treatment. Neither fas nor cytochrome C were affected by S1P. CONCLUSION: In conclusion, we propose that S1P may induce apoptotic signal on B16 melanoma cells by prolonged ERK activation and caspase-8, -9, -3 activations. S1P also appears to exert antiapoptotic signal by increasing Bcl-2 protein.
Apoptosis
;
Blotting, Western
;
Caspase 3
;
Caspase 8
;
Caspases
;
Cell Membrane
;
Cytochromes c
;
Humans
;
Lysophospholipids
;
Melanoma
;
Melanoma, Experimental
;
Neurons
;
Proteins
;
Sphingosine