1.Simultaneous deletion of floxed genes mediated by CaMKIIalpha-Cre in the brain and in male germ cells: application to conditional and conventional disruption of Goalpha.
Chan Il CHOI ; Sang Phil YOON ; Jung Mi CHOI ; Sung Soo KIM ; Young Don LEE ; Lutz BIRNBAUMER ; Haeyoung SUH-KIM
Experimental & Molecular Medicine 2014;46(5):e93-
The Cre/LoxP system is a well-established approach to spatially and temporally control genetic inactivation. The calcium/calmodulin-dependent protein kinase II alpha subunit (CaMKIIalpha) promoter limits expression to specific regions of the forebrain and thus has been utilized for the brain-specific inactivation of the genes. Here, we show that CaMKIIalpha-Cre can be utilized for simultaneous inactivation of genes in the adult brain and in male germ cells. Double transgenic Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice generated by crossing CaMKIIalpha-Cre(+/Cre) mice with floxed ROSA26 lacZ reporter (Rosa26(+/stop-lacZ)) mice exhibited lacZ expression in the brain and testis. When these mice were mated to wild-type females, about 27% of the offspring were whole body blue by X-gal staining without inheriting the Cre transgene. These results indicate that recombination can occur in the germ cells of male Rosa26(+/stop-lacZ)::CaMKIIalpha-Cre(+/Cre) mice. Similarly, when double transgenic Gnao(+/f)::CaMKIIalpha-Cre(+/Cre) mice carrying a floxed Go-alpha gene (Gnao(f/f)) were backcrossed to wild-type females, approximately 22% of the offspring carried the disrupted allele (Gnao(Delta)) without inheriting the Cre transgene. The Gnao(Delta/Delta) mice closely resembled conventional Go-alpha knockout mice (Gnao(-/-)) with respect to impairment of their behavior. Thus, we conclude that CaMKIIalpha-Cre mice afford recombination for both tissue- and time-controlled inactivation of floxed target genes in the brain and for their permanent disruption. This work also emphasizes that extra caution should be exercised in utilizing CaMKIIalpha-Cre mice as breeding pairs.
Animals
;
Brain/*metabolism
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
;
Female
;
GTP-Binding Protein alpha Subunits, Gi-Go/*genetics
;
*Gene Deletion
;
Gene Knockout Techniques/*methods
;
Male
;
Mice
;
RNA, Untranslated/genetics
;
Recombination, Genetic
;
Spermatozoa/*metabolism