1.Etiological analysis on a foodborne disease outbreak caused by two serotypes of Salmonella
Aixia YAN ; Ying KANG ; Yao CUI ; Wenxuan ZHAO ; Shoufei LI ; Miao WANG ; Yuanyuan WANG ; Luotong WANG ; Fengshuang WANG ; Bo PANG ; Ying LI
Chinese Journal of Epidemiology 2023;44(9):1440-1446
Objective:To understand the etiological characteristics of 2 serotypes of Salmonella strains isolated from a foodborne disease outbreak. Methods:A total of 11 anal swabs of the cases, 13 suspected contaminated food and 10 environmental samples were collected from a foodborne disease outbreak occurred on September 8, 2022 in a school. The anal swabs were enriched with selenite brilliant green enrichment broth (SBG) and brain heart infusion broth (BHI) respectively. PCR detection and culture of common intestinal pathogens were carried out. The suspected food samples were tested according to national standards for food safety. Multiple suspected Salmonella colonies were obtained and selected for serotype determination and whole genome sequencing. Serotypes were determined based on the whole-genome sequence, and clustering analysis was performed based on core genome single nucleotide polymorphism (SNP). Results:The positive rates of Salmonella in anal swabs and suspected food samples were 9/11 and 5/13 respectively. Both Salmonella Uganda and Salmonella Idikan were isolated from 4 anal swabs and 4 suspected food samples. For the remaining samples, only Salmonella Uganda or Salmonella Idikan was isolated in each sample. The positive rate of Salmonella in 11 anal swabs of the cases after BHI enrichment for 12 h and 24 h were all 9/11 in real-time PCR, same to the culture results. Salmonella Uganda and Salmonella Idikan formed two independent and genetically distant lineages in the clustering tree based on core genome SNP, and 0-14 and 0-23 SNP were observed in Salmonella Uganda and Salmonella Idikan respectively. Conclusions:This foodborne disease outbreak was probably caused by Salmonella Uganda and Salmonella Idikan, which both exhibited strong genetic diversity. The PCR based pathogen screening strategy plus pathogen enrichment for cases' annal swabs can be used in the routine outbreak investigation.
2.Effect of deep learning image reconstruction algorithm on CT image quality and detectability of hypovascular hepatic metastases at low radiation dose levels
Nana LIU ; Peijie LYU ; Xing LIU ; Juan YU ; Luotong WANG ; Huixia WANG ; Pengchao ZHAN ; Yan CHEN ; Jianbo GAO
Chinese Journal of Radiology 2022;56(11):1175-1181
Objective:To investigate the efficiency of deep learning image reconstruction (DLIR) algorithm in the image quality and detection of hypovascular hepatic metastases under low radiation doses in comparison with adaptive statistical iterative construction-V (ASiR-V).Methods:Fifty-six patients with suspected hypovascular hepatic metastases who needed abdominal enhanced CT scans were collected prospectively in the First Affiliated Hospital of Zhengzhou University from January to April 2021. The patients received conventional radiation dose with tube current-time products of 400 mA CT scans in the first venous phase, low-dose CT scans in the second venous phase, which were set as tube current-time products of 280 mA for group A (19 cases), 200 mA for group B (19 cases) and 120 mA for group C (18 case), respectively. The images of first venous phase and 3 groups of second venous phase were both reconstructed with ASiR-V60% and high-DLIR (DLIR-H). Quantitative parameters [image noise, liver and portal vein signal to noise ratio (SNR), contrast to noise ratio (CNR)] and qualitative parameters (overall image quality, lesion conspicuity, diagnostic confidence) were compared between ASiR-V60% and DLIR-H images, and the effective radiation dose (ED) and the lesion detectability of each group was recorded. The paired t test was used to compare quantitative parameters, whereas the Wilcoxon signed-rank test of paired data was used to compare qualitative parameters. Results:In the second venous phase, ED was (5.56±0.35) mSv in group A, (3.88±0.23) mSv in group B, and (2.42±0.23) mSv in group C, with a decrease of 30%, 50% and 70% compared with the first venous phase, respectively. Moreover, with the decrease of radiation dose, the noise gradually increased, and the CNR lesions, SNR liver and SNR portal vein all gradually decreased. DLIR-H images had statistically better quantitative scores than ASiR-V60% images when the same radiation dose was applied (all P<0.001). Furthermore, the qualitative parameters of each group decreased with the decrease of radiation dose. Under the same radiation dose, the overall image quality, lesion conspicuity and diagnostic confidence of DLIR-H were higher than those of ASiR-V60% (all P<0.001). All lesions [100% (84/84)] were detected by ASIR-V60% and DLIR-H in group A, 92.0% (75/81) in group B, and 88.0% (79/89) in group C. Conclusions:Compared with ASiR-V60%, DLIR-H could reduce image noise, improve overall image quality and lesion conspicuity of hypovascular hepatic metastases as well as increase diagnostic confidence under different radiation doses.