1.Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex Combination Alleviates Slow Transit Constipation due to Yang Deficiency in Rats via Regulating VIP/cAMP/PKA/AQP Pathway in Colon
Luona ZHAO ; Yuanfeng YANG ; Yuchuan LI ; Yuanzhe ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(21):103-113
ObjectiveTo investigate the effect and mechanism of Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex in regulating the intestinal function in the rat model of slow transit constipation (STC) due to yang deficiency via the vasoactive intestinal peptide (VIP)/cathelicidin antimicrobial peptide (cAMP)/protein kinase A (PKA)/aquaporin (AQP) pathway. MethodSD rats were randomized into 6 groups (n=6), including a control group, a model group, high-, medium-, and low-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex groups, and a prucalopride group. Other groups except the control group were treated with loperamide hydrochloride combined with ice water by gavage for the modeling of STC due to yang deficiency. The number of fecal pellets, time to the first black stool defecation, fecal water content, intestinal propulsion rate, and score of fecal properties were recorded in each group. At the end of the treatment, the colon was stained with hematoxylin-eosin (HE) to reveal the histopathological changes and Alcian blue/periodic acid-Schiff (AB-PAS) to reveal the secretion of colonic mucus. The enzyme-linked immunosorbent assay (ELISA) was employed to measure the level of VIP in the serum. The mRNA level of AQP in the colon was measured by polymerase chain reaction (Real-time PCR). Immunohistochemical staining was performed to observe the expression of AQPs in the colon and kidney tissues. Western blot was performed to determine the protein levels of cAMP, PKA, and VIP in the colon tissue. ResultCompared with the control group, the model group had longer time to the first black stool defecation, reduced fecal pellets and water content, reduced Bristol Stool Form Scale score and intestinal propulsion rate, and constipation aggravated(P<0.01). Moreover, increased the intestinal lesions, reduced the mucus secretion, reduce the serum VIP level, up-regulated the expression levels of AQP1 in the colon and kidney tissues, inhibited the expression of AQP3 and AQP9(P<0.01)., and down-regulated the protein levels of cAMP, PKA, and VIP in the colon tissue. Compared with the model group, the high-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex group had shortened time to the first black stool defecation, increased fecal pellets and water content, increased Bristol Stool Form Scale score and intestinal propulsion rate, and alleviated constipation symptoms. Moreover, high-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex reduced the intestinal lesions, increased the mucus secretion, elevated the serum VIP level(P<0.01)., down-regulated the expression levels of AQP1 in the colon and kidney tissues, promoted the expression of AQP3 and AQP9(P<0.05,P<0.01), and up-regulated the protein levels of cAMP, PKA, and VIP in the colon tissue. The medium- and low-dose groups had weaker effect than the high-dose group(P<0.01). ConclusionHigh-dose Aconiti Lateralis Radix Praeparata-Cinnamomi Cortex can improve the intestinal motility and balance the intestinal water and fluid metabolism by up-regulating the VIP/cAMP/PKA/AQP pathway, thereby mitigating the constipation symptoms in the rat model of slow transit constipation due to yang deficiency.