1.Molecular basis and significance of mechanical force research in respiratory field.
Journal of Biomedical Engineering 2009;26(1):221-224
Mechanical force plays an important role in physiological function and pathophysiologic conditions of respiratory system. Recently, a number of researches focused on how mechanical force affected pulmonary cells. This paper reviews the molecular basis of mechanical force in detail. The significance of mechanical force in respiratory therapy is also discussed.
Airway Resistance
;
Biomechanical Phenomena
;
Humans
;
Lung Compliance
;
Respiratory Mechanics
;
physiology
;
Respiratory Physiological Phenomena
;
Respiratory System
2.Physiological Correlation of Airway Pressure and Transpulmonary Pressure Stress Index on Respiratory Mechanics in Acute Respiratory Failure.
Chun PAN ; Lu CHEN ; Yun-Hang ZHANG ; Wei LIU ; Rosario URBINO ; V Marco RANIERI ; Hai-Bo QIU ; Yi YANG
Chinese Medical Journal 2016;129(14):1652-1657
BACKGROUNDStress index at post-recruitment maneuvers could be a method of positive end-expiratory pressure (PEEP) titration in acute respiratory distress syndrome (ARDS) patients. However, airway pressure (Paw) stress index may not reflect lung mechanics in the patients with high chest wall elastance. This study was to evaluate the Pawstress index on lung mechanics and the correlation between Pawstress index and transpulmonary pressure (PL) stress index in acute respiratory failure (ARF) patients.
METHODSTwenty-four ARF patients with mechanical ventilation (MV) were consecutively recruited from July 2011 to April 2013 in Zhongda Hospital, Nanjing, China and Ospedale S. Giovanni Battista-Molinette Hospital, Turin, Italy. All patients underwent MV with volume control (tidal volume 6 ml/kg) for 20 min. PEEP was set according to the ARDSnet study protocol. The patients were divided into two groups according to the chest wall elastance/respiratory system elastance ratio. The high elastance group (H group, n = 14) had a ratio ≥30%, and the low elastance group (L group, n = 10) had a ratio <30%. Respiratory elastance, gas-exchange, Pawstress index, and PLstress index were measured. Student's t-test, regression analysis, and Bland-Altman analysis were used for statistical analysis.
RESULTSPneumonia was the major cause of respiratory failure (71.0%). Compared with the L group, PEEP was lower in the H group (5.7 ± 1.7 cmH2O vs. 9.0 ± 2.3 cmH2O, P < 0.01). Compared with the H group, lung elastance was higher (20.0 ± 7.8 cmH2O/L vs. 11.6 ± 3.6 cmH2O/L, P < 0.01), and stress was higher in the L group (7.0 ± 1.9 vs. 4.9 ± 1.9, P = 0.02). A linear relationship was observed between the Pawstress index and the PLstress index in H group (R2 = 0.56, P < 0.01) and L group (R2 = 0.85, P < 0.01).
CONCLUSIONIn the ARF patients with MV, Pawstress index can substitute for PLto guide ventilator settings.
TRIAL REGISTRATIONClinicalTrials.gov NCT02196870 (https://clinicaltrials.gov/ct2/show/NCT02196870).
Adult ; China ; Female ; Humans ; Lung ; physiology ; Lung Compliance ; physiology ; Male ; Middle Aged ; Positive-Pressure Respiration ; Regression Analysis ; Respiratory Distress Syndrome, Adult ; therapy ; Respiratory Mechanics ; Tidal Volume ; physiology
3.Comparison of the effects of deep and moderate neuromuscular block on respiratory system compliance and surgical space conditions during robot-assisted laparoscopic radical prostatectomy: a randomized clinical study.
Shao-Jun ZHU ; Xiao-Lin ZHANG ; Qing XIE ; Yan-Feng ZHOU ; Kui-Rong WANG
Journal of Zhejiang University. Science. B 2020;21(8):637-645
OBJECTIVE:
Robot-assisted radical prostatectomy (RARP) requires pneumoperitoneum (Pnp) and a steep head-down position that may disturb respiratory system compliance (Crs) during surgery. Our aim was to compare the effects of different degrees of neuromuscular block (NMB) on Crs with the same Pnp pressure during RARP.
METHODS:
One hundred patients who underwent RARP were enrolled and randomly allocated to a deep or moderate NMB group with 50 patients in each group. Rocuronium was administered to both groups: in the moderate NMB group to maintain 1-2 responses to train-of-four (TOF) stimulation; and in the deep NMB group to maintain no response to TOF stimulation and 1-2 responses in the post-tetanic count. Pnp pressure in both groups was 10 mmHg (1 mmHg=133.3 Pa). Peak inspiratory pressure (Ppeak), mean pressure (Pmean), Crs, and airway resistance (Raw) were recorded after anesthesia induction and at 0, 30, 60, and 90 min of Pnp and post-Pnp. Surgical space conditions were evaluated after the procedure on a 4-point scale.
RESULTS:
Immediately after the Pnp, Ppeak, Pmean, and Raw significantly increased, while Crs decreased and persisted during Pnp in both groups. The results did not significantly differ between the two groups at any of the time points. There was no difference in surgical space conditions between groups. Body movements occurred in 14 cases in the moderate NMB group and in one case in the deep NMB group, and all occurred during obturator lymphadenectomy. A significant difference between the two groups was observed.
CONCLUSIONS
Under the same Pnp pressure in RARP, deep and moderate NMBs resulted in similar changes in Crs, and in other respiratory mechanics and surgical space conditions. However, deep NMB significantly reduced body movements during surgery.
Aged
;
Humans
;
Laparoscopy/methods*
;
Lung Compliance/physiology*
;
Male
;
Neuromuscular Blockade
;
Prostatectomy/methods*
;
Respiratory Mechanics
;
Robotic Surgical Procedures/methods*
;
Rocuronium/pharmacology*
4.Effects of Alveolar Recruitment and Positive End-Expiratory Pressure on Oxygenation during One-Lung Ventilation in the Supine Position.
Yong Seon CHOI ; Mi Kyung BAE ; Shin Hyung KIM ; Ji Eun PARK ; Soo Young KIM ; Young Jun OH
Yonsei Medical Journal 2015;56(5):1421-1427
PURPOSE: Hypoxemia during one-lung ventilation (OLV) remains a serious problem, particularly in the supine position. We investigated the effects of alveolar recruitment (AR) and positive end-expiratory pressure (PEEP) on oxygenation during OLV in the supine position. MATERIALS AND METHODS: Ninety-nine patients were randomly allocated to one of the following three groups: a control group (ventilation with a tidal volume of 8 mL/kg), a PEEP group (the same ventilatory pattern with a PEEP of 8 cm H2O), or an AR group (an AR maneuver immediately before OLV followed by a PEEP of 8 cm H2O). The tidal volume was reduced to 6 mL/kg during OLV in all groups. Blood gas analyses, respiratory variables, and hemodynamic variables were recorded 15 min into TLV (TLVbaseline), 15 and 30 min after OLV (OLV15 and OLV30), and 10 min after re-establishing TLV (TLVend). RESULTS: Ultimately, 92 patients were analyzed. In the AR group, the arterial oxygen tension was higher at TLVend, and the physiologic dead space was lower at OLV15 and TLVend than in the control group. The mean airway pressure and dynamic lung compliance were higher in the PEEP and AR groups than in the control group at OLV15, OLV30, and TLVend. No significant differences in hemodynamic variables were found among the three groups throughout the study period. CONCLUSION: Recruitment of both lungs with subsequent PEEP before OLV improved arterial oxygenation and ventilatory efficiency during video-assisted thoracic surgery requiring OLV in the supine position.
Adult
;
Aged
;
Anoxia
;
Female
;
Humans
;
Lung/physiopathology
;
Lung Compliance/physiology
;
Male
;
Middle Aged
;
One-Lung Ventilation/*methods
;
Oxygen/*blood
;
Positive-Pressure Respiration/*methods
;
Pulmonary Alveoli/*physiology
;
Pulmonary Gas Exchange
;
Respiratory Mechanics/*physiology
;
*Supine Position
;
Thoracic Surgery, Video-Assisted
;
Tidal Volume
5.Effects of two kinds of lung recruitment maneuvers on the correlated indexes of dogs with severe smoke inhalation injury.
Xincheng LIAO ; Guanghua GUO ; Feng ZHU ; Nianyun WANG ; Zhonghua FU ; Mingzhuo LIU
Chinese Journal of Burns 2014;30(4):299-304
OBJECTIVETo observe and compare the effects of two kinds of lung recruitment maneuvers, namely sustained inflation (SI) and incremental positive end-expiratory pressure (PEEP) (IP) on oxygenation, respiratory mechanics, and hemodynamics of dogs with severe smoke inhalation injury.
METHODSAfter being treated with conventional mechanical ventilation, 12 dogs were inflicted with severe smoke inhalation injury. They were divided into group SI and group IP according to the random number table, with 6 dogs in each group. Dogs in group SI were subjected to continuous positive airway pressure ventilation, with inspiratory pressure of 25 cmH2O (1 cmH2o = 0. 098 kPa), and it was sustained for 20 s. PEEP level in group IP was gradually increased by 5 cmH2O every 5 min up to 25 cmH2O, and then it was decreased by 5 cmH2O every 5 min until reaching 2-3 cmH2O. Then the previous ventilation mode was resumed in both groups for 8 hours. Blood gas analysis (pH value, PaO2, and PaCO2), oxygenation index (OI), respiratory mechanics parameters [peak inspiratory pressure (PIP), mean airway pressure, and dynamic lung compliance], and hemodynamic parameters [heart rate, mean arterial pressure (MAP), pulmonary arterial pressure (PAP), and cardiac output (CO)] were recorded or calculated before injury, immediately after injury, and at post ventilation hour (PVH) 2, 4, 6, 8. Data were processed with analysis of variance of repeated measurement and LSD-t test.
RESULTS(1) At PVH 6 and 8, pH values of dogs in group SI were significantly lower than those in group IP (with t values respectively 2. 431 and 2. 261, P values below 0.05); PaO2 levels in group SI [(87 ± 24), (78 ± 14) mmHg, 1 mmHg =0. 133 kPa] were lower than those in group IP [ (114 ± 18) , (111 ± 17) mmHg, with t values respectively 2. 249 and 3.671, P <0.05 or P <0.01]; OI values in group SI were significantly higher than those in group IP (with t values respectively 2.363 and 5.010, P <0.05 or P <0.01). No significant differences were observed in PaCO2 level within each group or between the two groups (with t values from 0. 119 to 1. 042, P values above 0.05). Compared with those observed immediately after injury, the pH values were significantly lowered (except for dogs in group IP at PVH 6 and 8, with t values from 2.292 to 3.222, P <0.05 or P <0.01), PaO2 levels were significantly elevated (with t values from 4. 443 to 6.315, P <0.05 or P <0.01), and OI values were significantly lowered (with t values from 2.773 to 9.789, P <0.05 orP <0.01) in both groups at all the treatment time points. (2) The PIP level at each time point showed no significant differences between two groups (with t values from 0. 399 to 1. 167, P values above 0. 05). At PVH 4 and 8, the mean airway .pressure values of dogs in group SI were significantly higher than those in group IP (with t values respectively 1.926 and 1. 190, P values below 0.05). At PVH 4, 6, and 8, the dynamic lung compliance levels of dogs in group SI [(9.5 ± 1.9), (12.8 ± 2. 1), (13. 1 ± 1.8) mL/cmH2O] were significantly lower than those in group IP [(11.6 ± 1.2), (15.4 ± 1.8), (14.9 ± 0.8) mL/cmH2O], with t values respectively 2. 289, 2. 303, 2. 238, P values below 0.05. Compared with those observed immediately after injury, PIP and the mean airway pressure values of dogs in two groups were significantly lowered at each treatment time point (with t values from 2. 271 to 7. 436, P <0. 05 or P < 0.01); the dynamic lung compliance levels were significantly elevated in both groups at PVH 6 and 8 (with t values from 2. 207 to 4. 195, P < 0.05 or P <0.01). (3) Heart rate, MAP, and PAP levels at each time point between two groups showed no significant differences (with t values from 0. 001 to 1. 170, P values above 0. 05). At PVH 4, 6, and 8, CO levels in group IP [(0. 6 + 0. 3), (0. 6 + 0. 4), (0. 5 + 0. 7) L/min] were significantly lower than those in group SI [(1.5 0.7), (1.8 + 1.1), (1.6 +0.9) L/min], with t values respectively 3. 028, 2.511, 2.363, P values below 0.05. Compared with that observed immediately after injury, CO level in group IP was significantly lowered at PVH 4, 6, or 8 (with t values respectively 2. 363, 2. 302, 2. 254, P values below 0. 05).
CONCLUSIONSBoth lung recruitment maneuvers can effectively improve oxygenation and lung compliance of dogs with severe smoke inhalation injury. IP is more effective in improving lung compliance, while SI shows less impact on the hemodynamic parameters.
Animals ; Blood Gas Analysis ; veterinary ; Dogs ; Hemodynamics ; Lung Compliance ; physiology ; Oxygen ; blood ; Oxygen Consumption ; physiology ; Positive-Pressure Respiration ; methods ; Respiration, Artificial ; Respiratory Mechanics ; Severity of Illness Index ; Smoke ; adverse effects ; Smoke Inhalation Injury ; physiopathology ; therapy