1.Immunohistochemical identification and quantitative analysis of cytoplasmic Cu/Zn superoxide dismutase in mouse organogenesis.
Jung Min YON ; In Jeoung BAEK ; Se Ra LEE ; Mi Ra KIM ; Beom Jun LEE ; Young Won YUN ; Sang Yoon NAM
Journal of Veterinary Science 2008;9(3):233-240
Cytoplasmic Cu/Zn superoxide dismutase (SOD1) is an antioxidant enzyme that converts superoxide to hydrogen peroxide in cells. Its spatial distribution matches that of superoxide production, allowing it to protect cells from oxidative stress. SOD1 deficiencies result in embryonic lethality and a wide range of pathologies in mice, but little is known about normal SOD1 protein expression in developing embryos. In this study, the expression pattern of SOD1 was investigated in post-implantation mouse embryos and extraembryonic tissues, including placenta, using Western blotting and immunohistochemical analyses. SOD1 was detected in embryos and extraembryonic tissues from embryonic day (ED) 8.5 to 18.5. The signal in embryos was observed at the lowest level on ED 9.5-11.5, and the highest level on ED 17.5-18.5, while levels remained constant in the surrounding extraembryonic tissues during all developmental stages examined. Immunohistochemical analysis of SOD1 expression on ED 13.5-18.5 revealed its ubiquitous distribution throughout developing organs. In particular, high levels of SOD1 expression were observed in the ependymal epithelium of the choroid plexus, ganglia, sensory cells of the olfactory and vestibulocochlear epithelia, blood cells and vessels, hepatocytes and hematopoietic cells of the liver, lymph nodes, osteogenic tissues, and skin. Thus, SOD1 is highly expressed at late stages of embryonic development in a cell- and tissue-specific manner, and can function as an important antioxidant enzyme during organogenesis in mouse embryos.
Animals
;
Cerebral Cortex/embryology/enzymology
;
Copulation
;
Cytoplasm/*enzymology
;
Embryonic Development/*physiology
;
Female
;
Immunohistochemistry
;
Lung/embryology/enzymology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Organogenesis/*physiology
;
Pregnancy
;
Stomach/embryology/enzymology
;
Superoxide Dismutase/deficiency/genetics/*metabolism
2.Different patterns of cyclin D1/CDK4-E2F-1/4 pathways in human embryo lung fibroblasts treated by benzoapyrene at different doses.
Meng YE ; Bing-Ci LIU ; Xiang-Lin SHI ; Bao-Rong YOU ; Hong-Ju DU ; Xiao-Wei JIA ; Fu-Hai SHEN
Biomedical and Environmental Sciences 2008;21(1):30-36
OBJECTIVETo investigate the roles of the cyclin D1/CDK4 and E2F-1/4 pathways and compare their work patterns in cell cycle changes induced by different doses of B[a]P.
METHODSHuman embryo lung fibroblasts (HELFs) were treated with 2 micromol/L or 100 micromol/L B[a]P which were provided with some characteristics of transformed cells (T-HELFs). Cyclin D1, CDK4 and E2F-1/4 expressions were determined by Western blotting. Flow cytometry was used to detect the distribution of cell cycle.
RESULTSAfter B[a]P treatment, the proportion of the first gap (G1) phase cells decreased. CDK4 and E2F-4 expression did not change significantly. In 2 micromol/L treated cells, a marked overexpression of cyclin D1 and E2F-1 was observed. However, in T-HELFs overexpression was limited to cyclin D1 only, and no overexpression of E2F-1 was observed. The decreases of G1 phase in response to B[a]P treatment were blocked in antisense cyclin D1 and antisense CDK4 transfected HELFs (A-D1 and A-K4) and T-HELFs (T-A-D1 and T-A-K4). After 2 micromol/L B[a]P treatment, overexpression of E2F-1 was attenuated in A-D1, and E2F-4 expression was decreased significantly in A-K4. In T-A-D1 and T-A-K4, E2F-4 expression was increased significantly, compared with T-HELFs. The E2F-1 expression remained unchanged in T-A-D1 and T-A-K4.
CONCLUSIONSCyclin D1/CDK4-E2F-1/4 pathways work in different patterns in response to low dose and high dose B[a]P treatment. In HELFs treated with 2 micromol/L B[a]P, cyclin D1 positively regulates the E2F-1 expression while CDK4 negatively regulates the E2F-4 expression; however, in HELFs treated with 100 micromol/L B[a]P, both cyclin D1 and CDK4 negatively regulate the E2F-4 expression.
Benzo(a)pyrene ; pharmacology ; Cell Cycle ; drug effects ; Cell Line ; Cyclin D1 ; metabolism ; Cyclin-Dependent Kinase 4 ; metabolism ; Dose-Response Relationship, Drug ; E2F4 Transcription Factor ; metabolism ; Fibroblasts ; drug effects ; enzymology ; metabolism ; Humans ; Lung ; cytology ; drug effects ; embryology ; enzymology ; metabolism
3.Cathepsin B is activated as an executive protease in fetal rat alveolar type II cells exposed to hyperoxia.
Experimental & Molecular Medicine 2011;43(4):223-229
Alveolar type II cells are main target of hyperoxia-induced lung injury. The authors investigated whether lysosomal protease, cathepsin B (CB), is activated in fetal alveolar type II cells in the transitional period from the canalicular to saccular stages during 65%-hyperoxia and whether CB is related to fetal alveolar type II cell (FATIIC) death secondary to hyperoxia. FATIICs were isolated from embryonic day 19 rats and exposed to 65%-oxygen for 24 h and 36 h. The cells exposed to room air were used as controls. Cell cytotoxicity was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry. CB activity was assessed by colorimetric assay, qRT-PCR and western blots. 65%-hyperoxia induced FATIIC death via necrosis and apoptosis. Interestingly, caspase-3 activities were not enhanced in FATIICs during 65%-hyperoxia, whereas CB activities were greatly increased during 65%-hyperoxia in a time-dependent manner, and similar findings were observed with qRT-PCR and western blots. In addition, the preincubation of CB inhibitor prior to 65%-hyperoxia reduced FATIIC death significantly. Our studies suggest that CB activation secondary to hyperoxia might have a relevant role in executing the cell death program in FATIICs during the acute stage of 65%-hyperoxia.
Animals
;
Caspase 3
;
Cathepsin B/*metabolism
;
Cell Death
;
Cell Hypoxia
;
Enzyme Activation
;
Female
;
In Situ Nick-End Labeling
;
L-Lactate Dehydrogenase/analysis
;
Lung/metabolism
;
Necrosis/metabolism
;
Oxygen
;
Pneumocytes/cytology/*metabolism
;
Polymerase Chain Reaction
;
Pregnancy
;
Pulmonary Alveoli/cytology/embryology/*enzymology
;
Rats
;
Rats, Sprague-Dawley