1.The effect of Qi'ao Decoction on ovalbumin induced and lipopolysaccharide enhanced severe asthma mice and its mechanism.
Chen-Xue JIANG ; Xin-Sheng FAN ; Peng-Cheng GU ; Hui-Qin XU
Chinese Journal of Natural Medicines (English Ed.) 2013;11(6):638-644
AIM:
To evaluate the effect of Qi'ao Deocoction (QAD) on the inflammation and hyperresponsiveness of asthma mice.
METHODS:
120 Balb/C mice were randomly divided into six groups: normal group, model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group. The asthma model was reproduced in Balb/C mice sensitized by ovalbumin, challenged by OVA and LPS. The mice of the normal group were sensitized, challenged and intranasally instilled by PBS. On day 28-34, 6.7, 13.4 and 26.8 g · kg(-1) Qi'ao Decoction were administrated; 0.002 4 g · kg(-1) dexamethasone solution was given to the dexamethasone group; normal and model groups were given the same amount of normal saline. Bronchoalveolar lavage fluid, airway hyperresponsiveness, lung histopathology and cytokines were then collected and analyzed.
RESULTS:
Compared with normal group, total cellular score, the number of macrophages, lymphocytes, eosinophils and neutrophils of model group significantly increased (P < 0.01). Compared with model group, the administration of dexamethasone induced a significant decrease in eosinophils and neutrophils (P < 0.05, P < 0.01). The number of eosinophils, which plays an important role in airway inflammatory reaction of asthma, of the three QAD groups all decreased (P < 0.01). RL before and after Ach (5 mg · mL(-1)) stimulation in the model group both overtook that in the normal group (P < 0.01). Compared with model group, dexamethasone group, high dose QAD group, medium dose QAD group and low dose QAD group groups all had significantly lower RL before and after Ach stimulation (P < 0.01). Normal pulmonary histopathology was found in the normal group. In the model group, mice exhibited marked increases in inflammatory cell infiltration, mostly including neutrophils and macrophages, perivascular inflammation and thickened alveolus wall (P < 0.01). Dexamethasone application mitigated inflammation around the bronchi (P < 0.05). These histopathological changes were ameliorated in the three decoction groups (P < 0.01, P < 0.05). In addition, alveolus and airway wall lesions of medium dose QAD group and high dose QAD group were reduced, the number of inflammatory cells infiltrated around the walls decreased, no clear degeneration of bronchial epithelial cells was found, and exudates in bronchi declined in different degrees. Compared with normal group, IFN-γ and IL-12 of model group significantly decreased, while IL-4 increased, showing statistic difference (P < 0.05). Compared with model group, IFN-γ and IL-12 level of dexamethasone group went up too, but IL-4 declined (P < 0.05). The level of IFN-γ of medium dose QAD group and high dose QAD group both increased; IL-4 and IL-12 of medium dose group were found significant differences (P < 0.05); but none of the cytokines of low dose QAD group showed statistical significance (P > 0.05).
CONCLUSION
QAD can significantly inhibit airway inflammation and airway hyperresponsiveness of mice with severe asthma induced by ovalumin and lipopolysaccharide, adjust the balance of cytokines, and improve lung histopathological condition. So, it exhibits great effect on severe asthma.
Animals
;
Asthma
;
chemically induced
;
drug therapy
;
immunology
;
pathology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Female
;
Humans
;
Interleukin-12
;
immunology
;
Interleukin-4
;
immunology
;
Lipopolysaccharides
;
adverse effects
;
immunology
;
Lung
;
immunology
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin
;
adverse effects
;
immunology
2.Effects of hydrocortisone on oxygen free radicals released by polymorphonuclear neutrophils in lipopolysaccharide-induced acute lung injury in mice.
Li ZHANG ; Kun-ling SHEN ; Tao ZHOU ; Yue-qiang XUE ; Peng YANG
Chinese Journal of Pediatrics 2004;42(9):659-662
BACKGROUNDCorticosteroid treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) has been one of the most controversial clinical issues in critical care. Although the administration of high-dose corticosteroids does not benefit patients with early septic shock and ARDS, recent clinical trials have indicated that treatment with relatively low-dose corticosteroids (2 to 3 mg/kg/day of methylprednisolone or equivalent) may improve outcome when used for late ARDS or persistent septic shock. The underlying mechanism was not fully clarified. Whether the administration of corticosteroids can arrest neutrophil-driven organ injury once started remains to be elucidated.
OBJECTIVETo observe the effects of hydrocortisone (HC, 6 mg/kg) on oxygen free radicals (OFR) released by PMN and pulmonary pathological changes in rat ALI model induced by lipopolysaccharide (LPS), to investigate the possible mechanism through which corticosteroids exert protective effect on ALI.
METHODSA rat model of ALI was induced by peritoneal injection of 2 x 10(12) Escherichia coli/kg. Fifty-six rats were randomly divided into three groups: normal control group, LPS group and HC group (6 mg/kg). Samples were collected 2 h, 4 h and 6 h after giving LPS to LPS and HC group (6 h after giving normal saline in normal control group) to measure the level of OFR released by PMN using chemiluminescence method based on lumino, and to compae of pulmonary pathological changes among the three groups.
RESULTSPathological examination with light microscope in LPS group showed thickened pulmonary interstitia, inflammatory cell infiltration, edema and hemorrhage, which were in accordance with the features of ALI. There were significant differences in the release of OFR by PMN among the three groups (P < 0.01). The level of OFR released by PMN in LPS group was significantly higher than that of the control group, and continued to increase during the observation period (2 - 6 h after LPS). The release of OFR by PMN in HC group was significantly suppressed as compared with LPS group, which was peaked at 4 h after LPS injection (to 98.2%); there were also significant differences in the grades of ALI pathologic changes among the three groups (P < 0.01). The grades of ALI pathologic changes in LPS group were significantly increased when compared with the normal control group (P < 0.05) while significantly decreased in HC group as compared with LPS group (P < 0.05).
CONCLUSIONIt was demonstrated in the LPS induced ALI model that OFR might play an important role in onset of ALI. Intervening with HC (6 mg/kg) treatment could ameliorate the lung injury and exert significant and sustained suppression on the release of OFR by PMN, showing that HC has a protective effect on LPS induced ALI and its theraputic effect occurs possibly through suppression on the release of OFR by PMN.
Acute Lung Injury ; etiology ; immunology ; Animals ; Disease Models, Animal ; Free Radicals ; metabolism ; Glucocorticoids ; pharmacology ; Hydrocortisone ; pharmacology ; Lipopolysaccharides ; adverse effects ; Lung ; immunology ; pathology ; Mice ; Neutrophils ; drug effects ; metabolism
3.Effect of montelukast sodium intervention on airway remodeling and percentage of Th17 cells/CD4+CD25+ regulatory T cells in asthmatic mice.
Li LI ; Chun-Yan LOU ; Min LI ; Jian-Bo ZHANG ; Jie CHEN
Chinese Journal of Contemporary Pediatrics 2016;18(11):1174-1180
OBJECTIVETo study the dynamic changes in the percentage of Th17 cells/CD4CD25regulatory T cells after intervention with montelukast sodium, a leukotriene receptor antagonist, in asthmatic mice and the association between them.
METHODSBalb/c mice were randomly divided into blank group, asthma group, and montelukast sodium group. The asthmatic mouse model of airway remodeling was established by sensitization with intraperitoneal injection of chicken ovalbumin (OVA) and aluminum hydroxide suspension and aerosol inhalation of OVA. The mice in the blank group were given normal saline, and those in the montelukast sodium group were given montelukast sodium by gavage before aerosol inhalation. Eight mice were randomly sacrificed within 24 hours after 2, 4, and 8 weeks of aerosol inhalation. The pathological sections of lung tissue were used to observe the degree of airway remodeling. Flow cytometry was used to measure the percentages of Th17 cells and CD4CD25regulatory T cells in CD4T cells.
RESULTSThe asthma group and the montelukast sodium group had significantly higher bronchial wall thickness and smooth muscle thickness at all time points compared with the blank group (P<0.05). At 8 weeks of intervention, the montelukast sodium group had significantly greater improvements in the above changes compared with the asthma group (P<0.05). Compared with the blank group, the asthma group and the montelukast sodium group had significant increases in Th17 cells (positively correlated with airway remodeling) and significant reductions in CD4CD25regulatory T cells (negatively correlated to airway remodeling) at all time points (P<0.05). At 8 weeks of intervention, the montelukast sodium group had a significant reduction in the number of Th17 cells and a significant increase in the number of CD4CD25regulatory T cells compared with the asthma group (P<0.05).
CONCLUSIONSMontelukast sodium intervention can alleviate airway remodeling and achieve better improvements over the time of intervention. The possible mechanism may be related to the improvement of immunologic derangement of CD4CD25regulatory T cells and inhibition of airway inflammation.
Acetates ; pharmacology ; Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; immunology ; Female ; Lung ; pathology ; Mice ; Mice, Inbred BALB C ; Quinolines ; pharmacology ; T-Lymphocytes, Regulatory ; immunology ; Th17 Cells ; immunology
4.Effects of heparanase inhibition by RNA interference on proliferation, invasiveness and apoptosis of lung cancer cells.
Qing-Fu ZHANG ; Qin HUANG ; Nan LIU ; Li-Li JIANG ; Xue-Shan QIU ; En-Hua WANG
Chinese Journal of Pathology 2008;37(12):826-830
OBJECTIVETo investigate the effects of heparanase expression inhibition on the proliferation, invasiveness and apoptosis of human lung adenocarcinoma cell line A549 cells.
METHODSRecombinant eukaryotic expression plasmid pshRNA-Hpa targeting human heparanase gene was constructed. A549 cells were cultured in DMEM and transfected with pshRNA-Hpa. The expression of heparanase mRNA and protein were examined by RT-PCR and Western blot. The proliferation, invasiveness and apoptotic rates of A549 cells were determined by MTT method, matrigel invasion assays and flow cytometry respectively.
RESULTSThe expression levels of heparanase mRNA and protein were down-regulated in A549 transfected with pshRNA-Hpa. The number of cells penetrating matrigel and the proliferation ability of A549 cells transfected with pshRNA-Hpa were reduced significantly compared to the control cells. The apoptotic rate of A549 cells transfected with pshRNA-Hpa was 12.53% +/- 0.34%, being significantly higher than that of the control cells (both P < 0.01). Western-blot showed that inhibition of heparanase expression led to reduced Akt phosphorylation.
CONCLUSIONSThe recombinant plasmid pshRNA-Hpa effectively inhibited the expression of heparanase, thus suppressing the proliferation and invasion and inducing apoptosis of A549 cells. The effects may be due to the down-regulation of Akt phosphorylation level.
Adenocarcinoma ; pathology ; Apoptosis ; drug effects ; Carcinoma, Non-Small-Cell Lung ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Down-Regulation ; Glucuronidase ; antagonists & inhibitors ; metabolism ; Humans ; Lung Neoplasms ; enzymology ; pathology ; RNA Interference ; immunology ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; pharmacology ; Transfection
5.Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.
Hyung Geun MOON ; Chil Sung KANG ; Jun Pyo CHOI ; Dong Sic CHOI ; Hyun Il CHOI ; Yong Wook CHOI ; Seong Gyu JEON ; Joo Yeon YOO ; Myoung Ho JANG ; Yong Song GHO ; Yoon Keun KIM
Experimental & Molecular Medicine 2013;45(1):e5-
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.
Animals
;
Aspirin/pharmacology/*therapeutic use
;
Cell Polarity/drug effects/immunology
;
Feedback, Physiological/*drug effects
;
Interferon-gamma/deficiency/metabolism
;
Interleukin-17/*metabolism/pharmacology
;
Interleukin-6/biosynthesis/*metabolism
;
Lipopolysaccharides/pharmacology
;
Lung/drug effects/metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Pneumonia/*drug therapy/*immunology/pathology
;
Th17 Cells/drug effects/*immunology/pathology
;
Transforming Growth Factor beta1/pharmacology
6.Consecutive allergen challenges resulted in decreased bronchial responsiveness.
Chinese Medical Journal 2002;115(11):1727-1729
OBJECTIVETo investigate bronchial responsiveness to acetylcholine in allergic airway inflammation of SD rats.
METHODSSD rats were immunized and challenged by chicken ovalbumin (OVA). Airway responsiveness, acetylcholine (Ach) provocation concentration needed to increase baseline airway resistance by 200% (PC(200)) were measured.
RESULTSThe value of baseline airway resistance in asthma group was significantly higher than that in control group (2.282 +/- 0.128 vs 3.193 +/- 0.239; P < 0.01). After multiple ovalbumin exposures, airway responsiveness to intravenous injection of acetylcholine decreased significantly (-LogPC(200): 4.006 +/- 0.554 vs 2.059 +/- 0.262; P < 0.01). Bronchial alveolar lavage fluid (BALF) and lung tissue specimen analysis indicated that airway allergic inflammation was present.
CONCLUSIONSThe study demonstrates a dissociation between the bronchoconstrictor response and bronchial hyper-responsiveness and indicates that multiple ovalbumin exposures induces persistent bronchoconstriction with airway hypo-responsiveness despite airway allergic inflammation.
Acetylcholine ; pharmacology ; Airway Resistance ; Allergens ; immunology ; Animals ; Bronchi ; drug effects ; physiology ; Bronchial Hyperreactivity ; etiology ; Bronchoconstriction ; Lung ; pathology ; Male ; Ovalbumin ; immunology ; Rats ; Rats, Sprague-Dawley
7.Dexmedetomidine alleviates pulmonary edema by upregulating AQP1 and AQP5 expression in rats with acute lung injury induced by lipopolysaccharide.
Yuan-xu JIANG ; Zhong-liang DAI ; Xue-ping ZHANG ; Wei ZHAO ; Qiang HUANG ; Li-kun GAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):684-688
This study aims to elucidate the mechanisms by which dexmedetomidine alleviates pulmonary edema in rats with acute lung injury induced by lipopolysaccharide (LPS). Male Wistar rats were randomly divided into five groups: normal saline control (NS) group, receiving intravenous 0.9% normal saline (5 mL/kg); LPS group, receiving intravenous LPS (10 mg/kg); small-dose dexmedetomidine (S) group, treated with a small dose of dexmedetomidine (0.5 μg · kg(-1) · h(-1)); medium-dose dexmedetomidine (M) group, treated with a medium dose of dexmedetomidine (2.5 μg · kg(-1) · h(-1)); high-dose dexmedetomidine (H) group, treated with a high dose of dexmedetomidine (5 μg · kg(-1) · h(-1)). The rats were sacrificed 6 h after intravenous injection of LPS or NS, and the lungs were removed for evaluating histological characteristics and determining the lung wet/dry weight ratio (W/D). The levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) in the lung tissues were assessed by enzyme- linked immunosorbent assay (ELISA). The mRNA and protein expression levels of aquaporin-1 (AQP1) and aquaporin-5 (AQP5) were detected by RT-PCR, immunohistochemistry, and Western blotting. The lung tissues from the LPS groups were significantly damaged, which were less pronounced in the H group but not in the small-dose dexmedetomidine group or medium-dose dexmedetomidine group. The W/D and the concentrations of TNF-α and IL-1β in the pulmonary tissues were increased in the LPS group as compared with those in NS group, which were reduced in the H group but not in S group or M group (P<0.01). The expression of AQP1 and AQP5 was lower in the LPS group than in the NS group, and significantly increased in the H group but not in the S group or M group (P<0.01). Our findings suggest that dexmedetomidine may alleviate pulmonary edema by increasing the expression of AQP-1 and AQP-5.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
pathology
;
Adrenergic alpha-2 Receptor Agonists
;
pharmacology
;
Animals
;
Aquaporin 1
;
agonists
;
genetics
;
immunology
;
Aquaporin 5
;
agonists
;
genetics
;
immunology
;
Dexmedetomidine
;
pharmacology
;
Dose-Response Relationship, Drug
;
Drug Administration Schedule
;
Gene Expression Regulation
;
Injections, Intravenous
;
Interleukin-1beta
;
antagonists & inhibitors
;
genetics
;
immunology
;
Lipopolysaccharides
;
Lung
;
drug effects
;
immunology
;
pathology
;
Male
;
Organ Size
;
drug effects
;
Pulmonary Edema
;
chemically induced
;
drug therapy
;
genetics
;
pathology
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Transcription, Genetic
;
Tumor Necrosis Factor-alpha
;
antagonists & inhibitors
;
genetics
;
immunology
8.Effects of costimulatory pathway OX40/OX40L on the pathogenesis of allergic asthma in mice.
Li HUANG ; Wei JI ; Wei-fang ZHOU ; Qin SHI ; Xu-yan CHEN ; Yu-min HU
Chinese Journal of Pediatrics 2006;44(6):455-458
OBJECTIVEAllergic asthma is thought to be mediated by CD4+ T lymphocytes producing the Th2-associated cytokines, which play a critical role in the development of the airway hyper-responsiveness and the eosinophilic inflammatory response. The costimulatory pathway CD28/B7 has been shown to play an important role in CD4+ T cell activation in allergic asthma. This study was conducted to evaluate the role of another costimulatory pathway OX40/OX40 ligand (L) in the pathogenesis of allergic asthma in BALB/c mice.
METHODSAn allergic asthma model in BALB/c mice was established. Thirty-six BALB/c mice were randomly divided into three groups with 12 in each. Mice in treatment group (group B) were treated with neutralizing anti-OX40L monoclonal antibody (mAb, 300 microg per mouse) during the sensitization period. Mice in two control groups, asthma model group (group A) and IgG antibody group (group C) were treated with normal saline (NS) and control IgG respectively instead of anti-OX40L mAb. Bronchoalveolar lavage fluid (BALF) was collected from the mice of each group for counting the total number of white blood cells (including neutrophil granulocyte, lymphocyte, monocyte and eosinophil granulocyte) and the proportions of these cells. The levels of IL-4 and INF-gamma in BALF were measured by ELISA. Lungs were removed for morphological examination after HE and PAS staining, and expression of OX40 in lungs was evaluated by immunohistochemical method.
RESULTS(1) The count of total number of white blood cells in BALF (x10(6)/ml) was lower in group B than that of group A and group C (26.6 +/- 4.6 vs. 36.8 +/- 5.2 and 34.3 +/- 6.9, respectively), the difference between the treatment group (group B) and two control groups (groups A and C) was significant; The proportions of eosinophils and lymphocytes in the BALF (%) were lower in group B than those in group A and group C (eosinophils 15.1 +/- 2.6 vs. 20.0 +/- 4.1 and 19.9 +/- 3.9, respectively; lymphocytes 7.0 +/- 0.9 vs. 8.9 +/- 1.6 and 8.6 +/- 1.8, respectively), the difference between the treatment group and two control groups was significant. (2) The IL-4 level in BALF (pg/ml) was lower in group B than that in group A and group C (672 +/- 58 vs. 809.57 +/- 106.00 and 784 +/- 58, respectively), but the INF-gamma levels in BALF (pg/ml) were higher than those in group A and group C (0.86 +/- 0.09 vs. 0.69 +/- 0.15 and 0.67 +/- 0.13 respectively), and all the differences were statistically significant. (3) The expression of OX40 in the lungs of mice in group B were at a lower level than that of group A and group C, and the morphological changes of asthma were ameliorated in the mice of the treatment group. The signs of mice in treatment group were obviously ameliorated as compared to the two control groups.
CONCLUSIONBlocking the costimulatory pathway by administering the neutralizing anti-OX40L mAb during the sensitization period of allergic asthma model could balance the Th1/Th2 responses, inhibit lung inflammation and ameliorate the signs of mice model of asthma.
Animals ; Antibodies, Monoclonal ; administration & dosage ; immunology ; pharmacology ; Antigens, Differentiation ; immunology ; metabolism ; Asthma ; immunology ; metabolism ; pathology ; therapy ; Bronchoalveolar Lavage Fluid ; cytology ; immunology ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; Eosinophils ; immunology ; Female ; Immunoglobulin G ; administration & dosage ; immunology ; pharmacology ; Immunohistochemistry ; Interferon-gamma ; analysis ; immunology ; Interleukin-4 ; analysis ; immunology ; Leukocyte Count ; Leukocytes ; immunology ; Lung ; drug effects ; immunology ; pathology ; Lymphocytes ; immunology ; Membrane Glycoproteins ; immunology ; Mice ; Mice, Inbred BALB C ; Ovalbumin ; toxicity ; Tumor Necrosis Factors ; immunology
9.Paeoniflorin inhibits macrophage-mediated lung cancer metastasis.
Qi WU ; Gang-Ling CHEN ; Ya-Juan LI ; Yang CHEN ; Fang-Zhen LIN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(12):925-932
Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases (paeoniflorin 10, 30, 100 μmol·L(-1), P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells (paeoniflorin 100 μmol·L(-1), P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4 (paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P < 0.01 vs control group). These results suggest that paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft partly through inhibiting the alternative activation of macrophages.
Animals
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Glucosides
;
administration & dosage
;
Humans
;
Interleukin-4
;
immunology
;
Lung Neoplasms
;
drug therapy
;
immunology
;
pathology
;
physiopathology
;
Macrophages
;
cytology
;
drug effects
;
immunology
;
Mice
;
Mice, Inbred C57BL
;
Monoterpenes
;
administration & dosage
;
Neoplasm Metastasis
;
Paeonia
;
chemistry
10.Application of Aidi injection (艾迪注射液) in the bronchial artery infused neo-adjuvant chemotherapy for stage III A non-small cell lung cancer before surgical operation.
Xue-fei SUN ; Yan-tao PEI ; Qiu-wei YIN ; Ming-sheng WU ; Guo-tao YANG
Chinese journal of integrative medicine 2010;16(6):537-541
OBJECTIVETo study the effect of Aidi Injection (艾迪注射液,ADI) applied in the bronchial artery, applied in the bronchial artery infused (BAI) neo-adjuvant chemotherapy for stage III A non-small cell lung cancer (NSCLC) before surgical operation.
METHODSThe 60 patients with NSCLC stage III A underwent two courses BAI chemotherapy before tumor incision were assigned to two groups, the treatment and the control groups, using a random number table, 30 in each group. ADI (100 mL) was given to the patients in the treatment group by adding into 500 mL of 5% glucose injection for intravenous dripping once daily, starting from 3 days before each course of chemotherapy, and it lasted for 14 successive days, so a total of 28 days of administration was completed. The therapeutic effectiveness and the adverse reaction that occurred were observed, and the levels of T-lymphocyte subsets, natural killer cell activity, and interleukin-2 in peripheral blood were measured before and after the treatment.
RESULTSThe effective rate in the treatment group was higher than that in the control group (70.0% vs. 56.7%, P<0.05). Moreover, as compared with the control group, the adverse reaction that occurred in the treatment group was less and mild, especially in terms of bone marrow suppression and liver function damage (P<0.05). Cellular immune function was suppressed in NSCLC patients, but after treatment, it ameliorated significantly in the treatment group, showing significant difference as compared with that in the control group (P<0.05).
CONCLUSIONADI was an ideal auxiliary drug for the patients in stage III A NSCLC received BAI neo-chemotherapy before surgical operation; it could enhance the effectiveness of chemotherapy, ameliorate the adverse reaction and elevate patients' cellular immune function; therefore, it is worthy for spreading in clinical practice.
Adult ; Aged ; Antineoplastic Agents ; adverse effects ; pharmacology ; therapeutic use ; Bronchial Arteries ; drug effects ; pathology ; Carcinoma, Non-Small-Cell Lung ; blood ; drug therapy ; immunology ; surgery ; Chemotherapy, Adjuvant ; Drugs, Chinese Herbal ; adverse effects ; pharmacology ; therapeutic use ; Female ; Humans ; Infusions, Intra-Arterial ; Injections ; Interleukin-2 ; blood ; Killer Cells, Natural ; drug effects ; immunology ; Lung Neoplasms ; blood ; drug therapy ; immunology ; surgery ; Lymphocyte Subsets ; drug effects ; immunology ; Male ; Middle Aged ; Neoplasm Staging ; Time Factors ; Treatment Outcome