1.Differential Effect of gamma-radiation-induced Heme Oxygenase-1 Activity in Female and Male C57BL/6 Mice.
Youngsoo HAN ; Alexander PLATONOV ; Medea AKHALAIA ; Yeon Sook YUN ; Jie Young SONG
Journal of Korean Medical Science 2005;20(4):535-541
Ionizing radiation produces reactive oxygen species, which exert diverse biological effects on cells and animals. We investigated alterations of heme oxygenase (HO) and non-protein thiols (NPSH), which are known as two major anti-oxidant enzymes, in female and male C57BL/6 mice in the lung, liver, and brain after whole-body gamma-irradiation with 10 Gy (1-7 days) as well as in the lung after whole-thorax gamma-irradiation (WTI) with 12.5 Gy (1-26 weeks). Most significant alteration of HO activity was observed in the liver, which elevated 250% in males. NPSH level in female liver was increased on the 5th-7th days but decreased in males on the 3rd day. In the lung, the elevation of HO activity in both sexes and the pattern of NPSH change were similar to that of the liver. On the other hand, the increase of HO activity on the 16th week and the decrease of NPSH level on the 2nd week were observed only in male lung after WTI. This study shows that the liver is the most sensitive tissue to gamma-irradiation-induced alterations of HO activity in both female and male mice. In addition, there exists significant differential effect of gamma-irradiation on anti-oxidant system in female and male mice.
Animals
;
Brain/*enzymology/metabolism/radiation effects
;
Comparative Study
;
Female
;
Gamma Rays
;
Gene Expression Regulation, Enzymologic/radiation effects
;
Liver/*enzymology/metabolism/radiation effects
;
Lung/*enzymology/metabolism/radiation effects
;
Male
;
Mice
;
Mice, Inbred C57BL
;
RNA, Messenger/genetics/metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Sex Factors
;
Sulfhydryl Compounds/metabolism
;
Time Factors
;
Whole-Body Irradiation
2.Exposure to power-frequency magnetic fields can induce activation of P38 mitogen-activated protein kinase.
Wenjun SUN ; Yingnian YU ; Huai CHIANG ; Yiti FU ; Deqiang LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2002;20(4):252-255
OBJECTIVETo study the effects of 50 Hz power-frequency magnetic fields on signal transduction pathway of P38 mitogen-activated protein kinase (P38 MAPK), and explore the cellular signal transduction mechanism of the biological effects induced by power-frequency magnetic fields.
METHODSChinese hamster lung (CHL) cell line was exposed to power-frequency magnetic fields with two intensities(0.1 and 0.4 mT) for different exposure durations. The cytoplasmic protein was extracted. The phosphorylated(activated) and non-phosphorylated P38 MAPK and MKK3/MKK6 were measured by Western blotting analysis with their specific corresponding antibodies.
RESULTSPower-frequency magnetic fields at 0.4 mT for 10 min could transitorily induce the activation of P38 MAPK and after 15 min the phosphorylation of P38 MAPK restored to control level, while 0.1 mT power-frequency magnetic fields could not induce the activation of P38 MAPK within 24 h. However, both 0.1 mT and 0.4 mT power-frequency magnetic fields could not phosphorylate(activate) the MKK3/MKK6, which is a general upstream kinase of P38 MAPK.
CONCLUSIONPower-frequency magnetic fields could transitorily activate the P38 MAPK, but not MKK3/MKK6. The activation mechanism of P38 MAPK needs to be further identified.
Animals ; Cell Line ; Cricetinae ; Cricetulus ; Enzyme Activation ; radiation effects ; Lung ; enzymology ; radiation effects ; MAP Kinase Kinase 3 ; metabolism ; MAP Kinase Kinase 6 ; metabolism ; Magnetics ; p38 Mitogen-Activated Protein Kinases ; metabolism ; radiation effects