1.Orange fluorescent protein--modification of green fluorescent protein GFPxm.
Wen-Xin LUO ; Min CHEN ; Tong CHENG ; Bao-Quan GUAN ; Shao-Wei LI ; Shao-Jing LI ; Jun ZHANG ; Ning-Shao XIA
Chinese Journal of Biotechnology 2003;19(1):56-62
Recently, we have reported a new gfp gene isolated from Aequorea macrodactyla. The protein purified from expressed E. coli exhibited an excitation peak at 476 nm and an emission peak at 496 nm. However, the drawback of only maturing to fluorescence at low temperature limited its applications. In this paper, we further describe twelve mutants of GFPxm. Seven mutants produced enhanced fluorescence when expressed in E. coli at higher temperature (37 degrees C). After six hours of induction at 25 degrees C, 32 degrees C and 37 degrees C respectively, the relative fluorescent intensities of GFPxm16, GFPxm18 and GFPxm19 were higher than that of EGFP, moreover GFPxm16 and GFPxm163 could preserve high fluorescent intensity even expressed at 42 degrees C. Four mutants of the seven could reach high expression level in three kind of mammalian cells. Another 6 mutants had red-shift of excitation-emission maxima, and longest excitation-emission maxima were 514nm and 525nm. Another three mutants had two excitation peaks, and one mutant had only one UV-excitation peak. The most exciting result is the mutant of OFPxm with orange color. The mutant has an excitation peak at 509 nm and an emission peak at 523nm. 523nm is yellowish green but the protein is orange observed by eyes. The mutant could reach high expression level and matured at higher temperature but the fluorescent intensity was comparatively low because of low quantum yield.
Animals
;
Electrophoresis, Polyacrylamide Gel
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
Temperature
3.Development of a novel two color tracer perfusion technique for the hydrodynamic study of aqueous outflow in bovine eyes.
Jing-yin ZHU ; Wen YE ; Hai-yan GONG
Chinese Medical Journal 2010;123(5):599-605
BACKGROUNDElevation of intraocular pressure is usually associated with primary open angle glaucoma and caused by increased outflow resistance. A two-color fluorescent tracer technique was developed to investigate the hydrodynamics of aqueous humor outflow with changing intraocular pressure within the same eye, to better understand the relationship between outflow facility and effective filtration area.
METHODSEighteen enucleated bovine eyes were first perfused at 30 mmHg with Dulbecco's phosphate-buffered saline containing 5.5 mmol/L D-glucose. After a stable baseline facility, red fluorescent microspheres (0.5 microm, 0.002% v/v) were exchanged and perfused. Eyes in the one-color control group (n = 6) were immediately perfused with fixative. In the experimental group (n = 6), eyes were perfused with green tracer after intraocular pressure reduced to 7 mmHg, while in the two-color control group (n = 6), eyes were perfused with green tracer with intraocular pressure remaining at 30 mmHg. All 12 eyes were then perfusion-fixed. Outflow facility was continuously recorded in all eyes. Confocal images were taken along the inner wall of the aqueous plexus and the percent of the effective filtration length (PEFL; length of inner wall exhibiting tracer labeling/total length of inner wall) was measured. The relationships between outflow facility and PEFL were analyzed statistically.
RESULTSNo significant differences were found in baseline facilities (microl x min(-1) x mmHg(-1)) among the three groups (the experimental group: 0.93 +/- 0.12; the two-color control group: 0.90 +/- 0.19; the one-color control group: 0.98 +/- 0.13). In the experimental group, the outflow facility was significantly higher at 7 mmHg (4.29 +/- 1.01) than that at 30 mmHg (1.90 +/- 0.67, P < 0.001), which corresponded to a significant increase in the PEFL at 7 mmHg (54.70 +/- 8.42) from that at 30 mmHg ((11.76 +/- 4.56)%, P < 0.001). The PEFL labeled by red fluorescent microspheres in the experimental group ((11.76 +/- 4.56)%) showed no significant difference from that of the one-color control group ((13.39 +/- 2.19)%, P = 0.473) or the two-color control group ((11.49 +/- 4.95)%, P = 0.930). The PEFL labeled by green fluorescent microspheres in the experimental group ((54.70 +/- 8.42)%) was significantly higher than that of the two color control group ((37.34 +/- 8.17)%, P = 0.010). A positive correlation was found between outflow facility and PEFL (r = 0.897, R(2) = 0.804) in the experimental group.
CONCLUSIONSChanges in aqueous humor outflow patterns before and after a change in intraocular pressure can be successfully distinguished within the same eye using our newly developed two-color tracer perfusion technique. The PEFL showed positive correlation with the outflow facility.
Animals ; Aqueous Humor ; physiology ; Cattle ; Intraocular Pressure ; Luminescent Proteins ; metabolism ; Microscopy, Confocal ; Microspheres ; Perfusion ; methods
4.Advances in the research and applications of orange fluorescent protein.
Wen PENG ; Peimin HE ; Dingji SHI ; Rui JIA
Chinese Journal of Biotechnology 2020;36(6):1060-1068
Fluorescent proteins can be used as probes to investigate intercellular molecular interactions and trace the pathway of specific metabolites, thus providing a detailed and accurate description of various metabolic processes and cellular pathways in living cells. Nowadays, the existing fluorescent proteins cover almost all spectral bands from ultraviolet to far-red. These fluorescent proteins have been applied in many fields of bioscience with the help of high-resolution microscopy, making great contributions to the development of biology. It is generally agreed that orange fluorescent proteins refer to the fluorescent proteins at the spectral range of 540-570 nm. In recent years, researches on orange fluorescent proteins have made great progress, and they have been widely applied in the field of biology and medicine as reporter protein and fluorescence resonance energy transfer as fluorescent receptor. This paper reviews the studies in the field of orange fluorescent proteins over the last 15 years, with the special focus on the development and application of orange fluorescent proteins to provide the basis for the future studies.
Biosensing Techniques
;
trends
;
Fluorescence Resonance Energy Transfer
;
Luminescent Proteins
;
metabolism
;
Research
;
trends
5.The labeling of C57BL/6j derived embryonic stem cells with enhanced green fluorescent protein.
Lu TENG ; Chongben ZHANG ; Jiefang YOU ; Kegang SHANG ; Jun GU
Chinese Medical Journal 2003;116(1):151-153
OBJECTIVETo labele MESPU35, a embryonic stem (ES) cell line derived from C57BL/6j mouse, with enhanced green fluorescent protein (EGFP) for further application.
METHODSThe EGFP gene was controlled by the hybrid CA promoter/enhancer (CMV enhancer/chicken beta-actin promoter/beta-actin intron) to construct the vector of the transgene, pCA-EGFP. The vector was transfected into MESPU35 by electroporation.
RESULTSWe generated EGFP expressing ES cells demonstrating normal properties. The green fluorescence of EGFP expressing cells was maintained in propagation of the ES cells for more than 30 passages as well as in differentiated cells. Cultured in suspension, the "green" ES cells aggregated, and formed embryoid bodies maintaining the green fluorescence at varying developmental stages. The "green" embryoid bodies could expand and differentiate into various types of cells, exhibiting ubiquitous green fluorescence.
CONCLUSIONSThe hybrid CA promoter/enhancer used to control the EGFP expressing ES cells, resulted in more intense and ubiquitous activity. The EGFP transfected cells yield bright green fluorescence, which can be visualized in real time and in situ. In addition, the ES cells, MESPU35, are derived from C57BL/6j mice, which are the most widely used in oncology, physiology and genetics. Compared to 129 substrains, C57BL/6j mice avoid a number of potential problems apparent in the other strains.
Animals ; Embryo, Mammalian ; cytology ; metabolism ; Green Fluorescent Proteins ; Luminescent Proteins ; genetics ; Mice ; Mice, Inbred C57BL ; Stem Cells ; metabolism ; Transfection
6.Transient expression in microplasmodia of Physarum polycephalum.
Shide LIU ; Caixia CHENG ; Ziyang LIN ; Jianhua ZHANG ; Minghua LI ; Zhuolong ZHOU ; Shengli TIAN ; Miao XING
Chinese Journal of Biotechnology 2009;25(6):854-862
The plasmodium of Physarum polycephalum is a suitable eukaryotic cell for cell cycle investigation, but there is no compatible transient expression system for the plasmodium. Using the promoter and terminator of ardC actin of Physarum polycephalum substituted the CMV IE and SV40 polyA of plasmid pDsRedl-N1, using cassette PardC-MCS-DsRed1-TardC substituted the cassette PardC-hph-TardC of plasmid pTB38, we constructed plasmids pXM1 and pXM2 for transient expression of red fluorescent protein (RFP) in Physarum polycephalum respectively. After reconstituting the transcription elongation factor homologous gene (pelf1) of Physarum polycephalum into the pXM2, we generated a plasmid pXM2-pelf1. After the plasmid pXM1, pXM2 and pXM2-pelf1 were electroporated into the plasmodium of Physarum polycephalum, we observed optimum RFP and PELF1-RFP expression under fluoroscope and confocal microscope between 24-48 h after electroporation, and found that ELF1-RFP expression was accumulated in nucleus of microplasmodium, the optimum electroporation parameters were 40 V/cm electric field, 1 ampere current, and 70 micros electric shock time. The results suggest that this expression system is qualified for transient expression of specific protein in plasmodium of Physarum polycephalum.
Actins
;
genetics
;
metabolism
;
Electroporation
;
Luminescent Proteins
;
biosynthesis
;
genetics
;
Physarum polycephalum
;
genetics
;
metabolism
;
Plasmids
;
genetics
;
metabolism
;
Transcriptional Elongation Factors
;
genetics
7.Spatiotemporal Imaging of Cellular Energy Metabolism with Genetically-Encoded Fluorescent Sensors in Brain.
Zhuo ZHANG ; Weicai CHEN ; Yuzheng ZHAO ; Yi YANG
Neuroscience Bulletin 2018;34(5):875-886
The brain has very high energy requirements and consumes 20% of the oxygen and 25% of the glucose in the human body. Therefore, the molecular mechanism underlying how the brain metabolizes substances to support neural activity is a fundamental issue for neuroscience studies. A well-known model in the brain, the astrocyte-neuron lactate shuttle, postulates that glucose uptake and glycolytic activity are enhanced in astrocytes upon neuronal activation and that astrocytes transport lactate into neurons to fulfill their energy requirements. Current evidence for this hypothesis has yet to reach a clear consensus, and new concepts beyond the shuttle hypothesis are emerging. The discrepancy is largely attributed to the lack of a critical method for real-time monitoring of metabolic dynamics at cellular resolution. Recent advances in fluorescent protein-based sensors allow the generation of a sensitive, specific, real-time readout of subcellular metabolites and fill the current technological gap. Here, we summarize the development of genetically encoded metabolite sensors and their applications in assessing cell metabolism in living cells and in vivo, and we believe that these tools will help to address the issue of elucidating neural energy metabolism.
Animals
;
Biosensing Techniques
;
Brain
;
cytology
;
metabolism
;
Cytological Techniques
;
Energy Metabolism
;
Humans
;
Luminescent Proteins
;
genetics
;
metabolism
;
Time Factors
8.The PTD domain of Tat protein enhance GFP protein delivering into myeloma cell SP2/0.
Zhi-Qi LI ; Xiao-Bo HU ; Sheng-Li YANG ; Yi GONG
Chinese Journal of Biotechnology 2002;18(5):644-647
In order to detect the protein delivery mediated by the PTD (protein transduction domain) of TAT Protein, a expression vector, named pT7460-GFP, was constructed by insert the PTD DNA Sequence, followed by a GFP (green fluorescent protein) gene fused in-frame, into the pT7450 vector. The TAT-GFP fusion protein was expressed in the E. coli ER2566. Most of the fusion protein was presented in the inclusion body. The protein was purified by Ni2+ affinity chromatography under denature conditions, then by a Sepharose Q column to remove urea. The soluble denatured protein was added directly to medium containing the Myeloma Cell SP2/0. It came out that the fusion protein could be detected delivered into the cells under fluorescent microscope in a short time.
Gene Products, tat
;
chemistry
;
metabolism
;
Green Fluorescent Proteins
;
Humans
;
Luminescent Proteins
;
metabolism
;
Microscopy, Fluorescence
;
Multiple Myeloma
;
metabolism
;
Protein Transport
;
Recombinant Fusion Proteins
;
metabolism
;
Tumor Cells, Cultured
9.Surface expression of NMDA receptors composed of NR1 subunit and NR2A subunit mutants with partially deleted C-terminus in HEK293 cells.
Chan-ying ZHENG ; Jian-hong LUO ; Ting FU ; Wei YANG ; Hai-qing SHEN
Journal of Zhejiang University. Medical sciences 2003;32(6):475-479
OBJECTIVETo examine the potential function of NMDA receptor NR2A subunit C-terminus in assembling and surface expression of the receptor in HEK293 cells.
METHODSFive vectors GFP- NR2ADeltaC1- DeltaC5 were constructed for expressing N-terminally GFP-tagged NR2A with C-terminal deletion at different regions by using conventional techniques of molecular cloning. The deleted region for NR2ADeltaC1-Delta C5 was 897L-1017S, 1024D-1142P, 1149D-1347G, 1354S-1464V, and 897L-1464V. These plasmids were transfected alone or co-transfected with NR1-1a into HEK293 cells. The surface NMDA receptors were immuno-stained using rabbit antibody against GFP and Cy3 conjugated secondary antibody in living cells.
RESULTThe vectors GFP-NR2ADeltaC1-DeltaC5 were generated and all of them expressed GFP fluorescence in the transfected cells. Surface NMDA receptors were detected by immuno-labeling with anti-GFP in the cells co-transfected by NR1-1a and any one of GFP-NR2ADeltaC1-DeltaC5. However, no surface expression of NR2A proteins was found in the transfected cells with any one of these plasmids alone.
CONCLUSIONWithin the region downstream from the 897L of NR2A subunit, neither a particular domain directly interacted with ER retention domain in NR1-1a C1 cassette, nor that determining ER retention of NR2A subunit itself has been found, indicating that more complicated mechanisms might exist in which the subunit assembling and targeting to plasma membrane of NMDA receptors undergo.
Cell Line ; Gene Deletion ; Green Fluorescent Proteins ; Humans ; Luminescent Proteins ; metabolism ; Mutation ; Receptors, N-Methyl-D-Aspartate ; analysis ; genetics