1.Emerging drug design strategies in anti-influenza drug discovery.
Chuanfeng LIU ; Lide HU ; Guanyu DONG ; Ying ZHANG ; Edeildo FERREIRA DA SILVA-JÚNIOR ; Xinyong LIU ; Luis MENÉNDEZ-ARIAS ; Peng ZHAN
Acta Pharmaceutica Sinica B 2023;13(12):4715-4732
Influenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains. In this review, we summarize general strategies used for the discovery and development of antiviral agents targeting multiple IFV strains (including those resistant to available drugs). Structure-based drug design, mechanism-based drug design, multivalent interaction-based drug design and drug repurposing are amongst the most relevant strategies that provide a framework for the development of antiviral drugs targeting IFV.
2.Not Available.
Letian SONG ; Shenghua GAO ; Bing YE ; Mianling YANG ; Yusen CHENG ; Dongwei KANG ; Fan YI ; Jin-Peng SUN ; Luis MENÉNDEZ-ARIAS ; Johan NEYTS ; Xinyong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica B 2024;14(1):87-109
The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.