1.Buyang Huanwu decoction promotes angiogenesis and improves hemorheological parameters after cervical spinal cord injury
Luchun Xu ; Yongdong Yang ; Guozheng Jiang ; Yushan Gao ; Jiawei Song ; Yukun Ma ; Jiaojiao Fan ; Guanlong Wang ; Xing Yu ; Xiangsheng Tang
Journal of Traditional Chinese Medical Sciences 2024;11(4):456-465
Objective:
To explore the effects of Buyang Huanwu decoction (BYHWD) on vascular neogenesis and hemorheological parameters following cervical spinal cord injury (SCI).
Methods:
An acute cervical SCI model was established using 84 female Sprague–Dawley rats. Functional recovery of the rats was evaluated using the forelimb locomotor scale score, forelimb grip strength test, and Basso-Beattie-Bresnahan score. The animals were subsequently euthanized at days 7 and 28 postoperatively. The gross morphology, neuronal survival, and myelin sheath in the injured area were evaluated using hematoxylin and eosin (HE), Nissl, and luxol fast blue (LFB) staining, respectively. Immunofluorescence staining was used to observe CD31 expression 7 days post-injury. Furthermore, the expression of CD31, neuronal nuclear protein (NeuN), and myelin basic protein (MBP) were evaluated 28 days post-injury. Additionally, vascular endothelial growth factor A (VEGFA) and VEGF receptor-2 (VEGFR-2) expression was evaluated using western blotting. Whole-blood viscosity, plasma viscosity, and red blood cell aggregation were measured using a hemorheometer.
Results:
From postoperative days 3–28, motor function in the BYHWD group began to recover considerably compared to the SCI group. BYHWD effectively restored spinal cord histopathology. In addition, the number of NeuN-positive cells, and fluorescence intensity of CD31at 7 and 28 days and MBP significantly increased in the BYHWD group compared with the SCI group (all P < .05). Moreover, this decoction significantly upregulated the expression of VEGFA and VEGFR-2 (all P < .05). BYHWD improved the hemorheology results (i.e., except erythrocyte aggregation index in the low-dose group), revealing statistically significant differences compared with the SCI group (all P < .05).
Conclusion
BYHWD effectively promoted angiogenesis, improved hemorheological parameters, and protected neurons and myelin sheaths, ultimately promoting the recovery of neurological function after cervical SCI in rats. These findings suggest that BYHWD promotes vascular neogenesis through the VEGFA/VEGFR-2 pathway.
2.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis
Luchun XU ; Guozheng JIANG ; Yukun MA ; Jiawei SONG ; Yushan GAO ; Guanlong WANG ; Jiaojiao FAN ; Yongdong YANG ; Xing YU ; Xiangsheng TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):20-30
ObjectiveTo explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI). MethodsNinety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg-1), high-dose Buyang Huanwutang group (25 g·kg-1), and Buyang Huanwutang + inhibitor group (25 g·kg-1 + 5 g·kg-1 RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue. ResultsCompared to the sham operation group, the model group exhibited significantly reduced BBB scores (P<0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (P<0.01), reduced fluorescence intensity of MBP and GPX4 (P<0.01), lower levels of GSH and SOD (P<0.01), and downregulated mRNA expression of GPX4 (P<0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (P<0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (P<0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (P<0.05, P<0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group significantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (P<0.05, P<0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (P<0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (P<0.01) and significantly increased GSH and SOD levels (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. ConclusionBuyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.