1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
2.Shaoyaotang Containing Serum Mediates Fas/FasL Pathway to Inhibit Lipopolysaccharide Induced Inflammation and Apoptosis of Caco-2 Cells
Yuting YANG ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Nianjia XIE ; Bo ZOU ; Daguang CHEN ; Erle LIU ; Yi LU ; Zhaowen LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):62-69
ObjectiveTo investigate the effects of different concentrations of Shaoyaotang-containing serum on lipopolysaccharide (LPS)-induced inflammation of human colorectal adenocarcinoma (Caco-2) cells by inhibiting apoptosis via activating the tumor necrosis factor (TNF) receptor superfamily member 6 (Fas)/Fas ligand (FasL) pathway. MethodsCaco-2 cells were allocated into blank, model (LPS, 10 mg·L-1), Shaoyaotang-containing serum (5%, 10%, 15%, 20%), and Fas inhibitor (KR-33493, 20 mmol·L-1) groups. Except the blank group, the other groups were stimulated with 10 mg·L-1 LPS for 24 h for the modeling of inflammation. After successful modeling, the blank, Fas inhibitor, and model groups were treated with blank serum, and the Shaoyaotang-containing serum groups were treated with the serum samples at corresponding concentrations for 24 h. The Fas inhibitor group was subjected to KR-33493 pretreatment for 1 h. Cell proliferation and viability were examined by the cell-counting kit-8 (CCK-8) method. The levels of interleukin (IL)-6, IL-1β, and TNF-α were measured by enzyme-linked immunosorbent assay. Apoptosis was detected by flow cytometry. The protein and mRNA levels of Fas, FasL, cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsCompared with the blank group, the model group presented a decrease in cell survival rate (P<0.01). Compared with that in the model group, the cell survival rate showed no significant change in the 5% Shaoyaotang-containing serum group but increased in the 10%, 15%, and 20% Shaoyaotang-containing serum groups (P<0.01). Since there was no statistical difference between the 5% Shaoyaotang-containing serum group and the model group, 10%, 15%, and 20% Shaoyaotang-containing sera were selected for the follow-up study. Compared with the blank group, the model group showed risen levels of IL-6, IL-1β, and TNF-α (P<0.01), an increased apoptosis rate (P<0.01), up-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.01), and down-regulated protein and mRNA levels of Bcl-2 (P<0.01). Compared with the model group, the Fas inhibitor group and the 10%, 15%, and 20% Shaoyaotang-containing serum groups showed declined levels of IL-6, IL-1β, and TNF-α (P<0.01), decreased apoptosis rates (P<0.01), down-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and up-regulated protein and mRNA levels of Bcl-2 (P<0.05, P<0.01). In addition, the 15% and 20% Shaoyaotang-containing serum groups had lower levels of IL-6, IL-1β, and TNF-α (P<0.05, P<0.01), lower apoptosis rates (P<0.05, P<0.01), lower protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and higher protein and mRNA levels of Bcl-2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can reduce the content of inflammatory factors in Caco-2 cells, down-regulate the protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax, and up-regulate the protein and mRNA levels of Bcl-2 under the intervention of LPS by regulating the Fas/FasL pathway and inhibiting the apoptosis of intestinal epithelial cells in ulcerative colitis.
3.Shaoyaotang Containing Serum Mediates Fas/FasL Pathway to Inhibit Lipopolysaccharide Induced Inflammation and Apoptosis of Caco-2 Cells
Yuting YANG ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Nianjia XIE ; Bo ZOU ; Daguang CHEN ; Erle LIU ; Yi LU ; Zhaowen LYU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):62-69
ObjectiveTo investigate the effects of different concentrations of Shaoyaotang-containing serum on lipopolysaccharide (LPS)-induced inflammation of human colorectal adenocarcinoma (Caco-2) cells by inhibiting apoptosis via activating the tumor necrosis factor (TNF) receptor superfamily member 6 (Fas)/Fas ligand (FasL) pathway. MethodsCaco-2 cells were allocated into blank, model (LPS, 10 mg·L-1), Shaoyaotang-containing serum (5%, 10%, 15%, 20%), and Fas inhibitor (KR-33493, 20 mmol·L-1) groups. Except the blank group, the other groups were stimulated with 10 mg·L-1 LPS for 24 h for the modeling of inflammation. After successful modeling, the blank, Fas inhibitor, and model groups were treated with blank serum, and the Shaoyaotang-containing serum groups were treated with the serum samples at corresponding concentrations for 24 h. The Fas inhibitor group was subjected to KR-33493 pretreatment for 1 h. Cell proliferation and viability were examined by the cell-counting kit-8 (CCK-8) method. The levels of interleukin (IL)-6, IL-1β, and TNF-α were measured by enzyme-linked immunosorbent assay. Apoptosis was detected by flow cytometry. The protein and mRNA levels of Fas, FasL, cysteinyl aspartate-specific proteinase (Caspase)-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were determined by Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR), respectively. ResultsCompared with the blank group, the model group presented a decrease in cell survival rate (P<0.01). Compared with that in the model group, the cell survival rate showed no significant change in the 5% Shaoyaotang-containing serum group but increased in the 10%, 15%, and 20% Shaoyaotang-containing serum groups (P<0.01). Since there was no statistical difference between the 5% Shaoyaotang-containing serum group and the model group, 10%, 15%, and 20% Shaoyaotang-containing sera were selected for the follow-up study. Compared with the blank group, the model group showed risen levels of IL-6, IL-1β, and TNF-α (P<0.01), an increased apoptosis rate (P<0.01), up-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.01), and down-regulated protein and mRNA levels of Bcl-2 (P<0.01). Compared with the model group, the Fas inhibitor group and the 10%, 15%, and 20% Shaoyaotang-containing serum groups showed declined levels of IL-6, IL-1β, and TNF-α (P<0.01), decreased apoptosis rates (P<0.01), down-regulated protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and up-regulated protein and mRNA levels of Bcl-2 (P<0.05, P<0.01). In addition, the 15% and 20% Shaoyaotang-containing serum groups had lower levels of IL-6, IL-1β, and TNF-α (P<0.05, P<0.01), lower apoptosis rates (P<0.05, P<0.01), lower protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax (P<0.05, P<0.01), and higher protein and mRNA levels of Bcl-2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can reduce the content of inflammatory factors in Caco-2 cells, down-regulate the protein and mRNA levels of Fas, FasL, Caspase-3, Caspase-9, and Bax, and up-regulate the protein and mRNA levels of Bcl-2 under the intervention of LPS by regulating the Fas/FasL pathway and inhibiting the apoptosis of intestinal epithelial cells in ulcerative colitis.
4.Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury.
Yifan LU ; Tianyu WANG ; Bo YU ; Kang XIA ; Jiayu GUO ; Yiting LIU ; Xiaoxiong MA ; Long ZHANG ; Jilin ZOU ; Zhongbao CHEN ; Jiangqiao ZHOU ; Tao QIU
Chinese Medical Journal 2025;138(9):1061-1071
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/physiology*
;
Animals
;
Liver Diseases/metabolism*
;
Liver/metabolism*
;
Reperfusion Injury/metabolism*
5.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
6.NUP62 alleviates senescence and promotes the stemness of human dental pulp stem cells via NSD2-dependent epigenetic reprogramming.
Xiping WANG ; Li WANG ; Linxi ZHOU ; Lu CHEN ; Jiayi SHI ; Jing GE ; Sha TIAN ; Zihan YANG ; Yuqiong ZHOU ; Qihao YU ; Jiacheng JIN ; Chen DING ; Yihuai PAN ; Duohong ZOU
International Journal of Oral Science 2025;17(1):34-34
Stem cells play a crucial role in maintaining tissue regenerative capacity and homeostasis. However, mechanisms associated with stem cell senescence require further investigation. In this study, we conducted a proteomic analysis of human dental pulp stem cells (HDPSCs) obtained from individuals of various ages. Our findings showed that the expression of NUP62 was decreased in aged HDPSCs. We discovered that NUP62 alleviated senescence-associated phenotypes and enhanced differentiation potential both in vitro and in vivo. Conversely, the knocking down of NUP62 expression aggravated the senescence-associated phenotypes and impaired the proliferation and migration capacity of HDPSCs. Through RNA-sequence and decoding the epigenomic landscapes remodeled induced by NUP62 overexpression, we found that NUP62 helps alleviate senescence in HDPSCs by enhancing the nuclear transport of the transcription factor E2F1. This, in turn, stimulates the transcription of the epigenetic enzyme NSD2. Finally, the overexpression of NUP62 influences the H3K36me2 and H3K36me3 modifications of anti-aging genes (HMGA1, HMGA2, and SIRT6). Our results demonstrated that NUP62 regulates the fate of HDPSCs via NSD2-dependent epigenetic reprogramming.
Humans
;
Dental Pulp/cytology*
;
Nuclear Pore Complex Proteins/genetics*
;
Cellular Senescence/genetics*
;
Stem Cells/metabolism*
;
Epigenesis, Genetic
;
Cell Proliferation
;
Cell Differentiation
;
Histone-Lysine N-Methyltransferase/metabolism*
;
Cells, Cultured
;
Cellular Reprogramming
;
Cell Movement
;
Proteomics
7.Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Lu XUE ; Tiancai CHANG ; Jiacheng GUI ; Zimu LI ; Heyu ZHAO ; Binqian ZOU ; Junnan LU ; Mei LI ; Xin WEN ; Shenghua GAO ; Peng ZHAN ; Lijun RONG ; Liqiang FENG ; Peng GONG ; Jun HE ; Xinwen CHEN ; Xiaoli XIONG
Protein & Cell 2025;16(8):705-723
Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp domain. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
Nipah Virus/chemistry*
;
Cryoelectron Microscopy
;
Viral Proteins/genetics*
;
RNA-Dependent RNA Polymerase/genetics*
;
Phosphoproteins/genetics*
;
Humans
;
Models, Molecular
;
Protein Binding
8.Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms
Xin-Rong LU ; Yong-Liang TONG ; Wei-Li KONG ; Lin ZOU ; Dan-Feng SHEN ; Shao-Xian LÜ ; Rui-Jie LIU ; Shao-Xing ZHANG ; Yu-Xin ZHANG ; Lin-Lin HOU ; Gui-Qin SUN ; Li CHEN
Progress in Biochemistry and Biophysics 2024;51(5):985-999
Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection andglycan editing. Biochemically, ENGase can specifically hydrolyze β‑1,4 glycosidic bond between the twoN-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.
9.Iodine Nutrition,Thyroid-stimulating Hormone,and Related Factors of Postpartum Women from three Different Areas in China:A Cross-sectional Survey
Yun Xiao SHAN ; Yan ZOU ; Chun Li HUANG ; Shan JIANG ; Wen Wei ZHOU ; Lan Qiu QIN ; Qing Chang LIU ; Yan Xiao LUO ; Xi Jia LU ; Qian De MAO ; Min LI ; Yu Zhen YANG ; Chen Li YANG
Biomedical and Environmental Sciences 2024;37(3):254-265
Objective Studies on the relationship between iodine,vitamin A(VA),and vitamin D(VD)and thyroid function are limited.This study aimed to analyze iodine and thyroid-stimulating hormone(TSH)status and their possible relationships with VA,VD,and other factors in postpartum women. Methods A total of 1,311 mothers(896 lactating and 415 non-lactating)from Hebei,Zhejiang,and Guangxi provinces were included in this study.The urinary iodine concentration(UIC),TSH,VA,and VD were measured. Results The median UIC of total and lactating participants were 142.00 μg/L and 139.95 μg/L,respectively.The median TSH,VA,and VD levels in all the participants were 1.89 mIU/L,0.44 μg/mL,and 24.04 ng/mL,respectively.No differences in the UIC were found between lactating and non-lactating mothers.UIC and TSH levels were significantly different among the three provinces.The rural UIC was higher than the urban UIC.Obese mothers had a higher UIC and a higher prevalence of excessive TSH.Higher UICs and TSHs levels were observed in both the VD deficiency and insufficiency groups than in the VD-sufficient group.After adjustment,no linear correlation was observed between UIC and VA/VD.No interaction was found between vitamins A/D and UIC on TSH levels. Conclusion The mothers in the present study had no iodine deficiency.Region,area type,BMI,and VD may be related to the iodine status or TSH levels.
10.Analysis and prediction of disease burden of cirrhosis and other chronic liver diseases due to alcohol use in China from 1990 to 2030
Sui ZHU ; Shentong CHEN ; Yingying JIN ; Shangwen LU ; Fengjuan ZOU ; Wenjun MA ; Fangfang ZENG ; Xiaofeng LIANG
Chinese Journal of Epidemiology 2024;45(2):185-191
Objective:To comprehensively understand the disease burden of liver cirrhosis and other chronic liver diseases caused by alcohol use in China from 1990 to 2019, as well as to predict the trends in disease burden from 2020 to 2030.Methods:The analysis utilized data from the Global Burden of Disease study in 2019 (GBD2019). Key indicators such as incidence rate, mortality rate, disability-adjusted life years (DALY), years of life lost due to premature mortality, and years lived with disability were selected to describe the disease burden of alcohol-related liver cirrhosis and other chronic liver diseases in China from 1990 to 2019. The estimated annual percentage change (EAPC) was used to depict the temporal trends in disease burden. Furthermore, a Bayesian age-period-cohort (BAPC) model was constructed using R software to predict the age-standardized incidence rate (ASIR) and age-standardized mortality rate (ASMR) of alcohol-related liver cirrhosis and other chronic liver diseases in China from 2020 to 2030.Results:From 1990 to 2019, the incidence of alcohol-related liver cirrhosis and other chronic liver diseases in China showed an upward trend, with an EAPC of 0.31% (95% CI: 0.10%-0.52%). However, the DALY declined, with an EAPC of -2.81% (95% CI: -2.92% - -2.70%). The ASMR showed a downward trend, with an EAPC of -2.55% (95% CI: -2.66% - -2.45%). The highest incidence of cirrhosis of liver caused by alcohol and other chronic liver diseases was reported in the age group of 35-49 years, while the ASMR increased gradually with age, with a significant rise after the age of 30. The age-standardized DALY rate peaked between the ages of 55 and 64. The disease burden indicators for males were consistently higher than those for females during the same period. According to the predictions of the BAPC model, from 2020 to 2030, the ASIR for cirrhosis of liver caused by alcohol and other chronic liver diseases in the entire population of China was projected to increase from 3.45/100 000 in 2020 to 3.78/100 000 in 2030, a growth of 9.57%. Conversely, the ASMR was expected to decrease from 1.45/100 000 in 2020 to 1.24/100 000 in 2030, a reduction of 14.48%. Conclusions:The disease burden of cirrhosis of liver caused by alcohol and other chronic liver diseases remained serious in China, especially in men and the middle-aged to elderly population. There is a pressing need to prioritize attention and resources towards these groups. Despite the projected decrease in ASMR, the ASIR continued to rise and is expected to persist in its upward trend until 2030.

Result Analysis
Print
Save
E-mail