1.Downregulation of LINC00638 contributes to the pathogenesis of rheumatoid arthritis-associated interstitial lung disease via inhibiting the Nrf2/ARE signaling pathway
Zhuojun LIAO ; Naiwang TANG ; Jiahui CHEN ; Xueying SUN ; Jiamin LU ; Qin WU ; Ronghuan YU ; Ying ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):421-431
Objective To identify long non-coding RNA (lncRNA) associated with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) and investigate their mechanisms. Methods Peripheral blood samples were collected from RA-ILD patients (n=3), RA patients without lung involvement (n=3), and healthy controls (n=3). Next-generation sequencing was performed to screen differentially expressed lncRNA. A human fibrotic lung cell model was established by inducing the MRC-5 cell line with transforming growth factor-β (TGF-β). Following siRNA-mediated knockdown of target genes, changes in inflammatory and oxidative stress-related genes were analyzed via real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Western blotting and dual-luciferase reporter (DLR) assays were used to validate protein expression, ubiquitination levels, and nuclear translocation of oxidative stress regulators, and antioxidant response element (ARE) transcriptional activity. Rescue experiments were conducted to confirm the role of target lncRNA in oxidative stress and inflammation in fibrotic lung cells. Results High-throughput sequencing revealed significant downregulation of LINC00638 in RA-ILD patients. Knockdown of LINC00638 markedly reduced transcriptional levels of interleukin (IL)-4, nuclear factor erythroid-2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase 2 (SOD2), while increasing IL-6, IL-1β, interferon-γ (IFN-γ), and reactive oxygen species (ROS) levels. Furthermore, LINC00638 knockdown decreased Nrf2 protein expression, increased its ubiquitination, reduced nuclear translocation, and suppressed ARE transcriptional activity. In MRC-5 cells, LINC00638 knockdown combined with N-acetylcysteine treatment restored Nrf2 and HO-1 levels while reducing IL-6 expression. Conclusions LINC00638 suppresses inflammatory responses in RA-ILD by activating the Nrf2/ARE antioxidant signaling pathway, suggesting its potential as a therapeutic target for diagnosis and treatment.
2.Induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 through regulating the Fas/FasL sig-naling pathway and the inhibitory effect on the growth of transplanted tumor in nude mice
Minna YAO ; Wei ZHANG ; Kai GAO ; Ruili LI ; Ying YIN ; Chao GUO ; Yunyang LU ; Haifeng TANG ; Jingwen WANG
China Pharmacy 2025;36(18):2238-2243
OBJECTIVE To investigate the induction of apoptosis in hepatocellular carcinoma cells by polyphyllin 9 (PP9) through the regulation of the Fas/Fas ligand (FasL) signaling pathway, and its inhibitory effect on the growth of transplanted tumor in nude mice. METHODS Based on the screening of cell lines and intervention conditions, HepG2 cells were selected as the experimental subject to investigate the effects of 2 μmol/L and 4 μmol/L PP9 treatment on cell colony formation activity, apoptosis rate, as well as the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3. Additionally, Fas inhibitor KR- 33493 was introduced to investigate the underlying mechanism of PP9’s anti-hepatocellular carcinoma activity. Using HepG2 cell tumor-bearing nude mice model as the object, and 5-fluorouracil (20 mg/kg) as the positive control, the effects of 10 mg/kg PP9 on tumor volume, tumor mass, and the protein expressions of the nuclear proliferation-associated antigen Ki-67 and cleaved caspase-3 in tumor-bearing nude mice were investigated. RESULTS Compared with the control group, 2, 4 μmol/L PP9 significantly decreased the number of clones and the clone formation rate of cells, but significantly increased the apoptosis rate, the protein expressions of Fas, FasL, cleaved caspase-8 and cleaved caspase-3 (P<0.05 or P<0.01). However, the combination of Fas inhibitor KR-33493 could significantly reverse the effect of PP9 on the up-regulation of proteins related to the Fas/FasL signaling pathway (P<0.01). Compared with the control group, the tumor volume (on day 27), mass and protein expression of Ki- 67 in nude mice of the PP9 group were significantly decreased, while the protein expression of cleaved caspase-3 was significantly increased (P<0.01). CONCLUSIONS PP9 can induce apoptosis of HepG2 cells by activating the Fas/FasL signaling pathway. Meanwhile, PP9 can also effectively inhibit the growth of transplanted tumors in nude mice.
3.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
4.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
5.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
6.A convenient research strategy for functional verification of epigenetic regulators during spermatogenesis.
Shan LI ; Ying YUAN ; Ke-Yu ZHANG ; Yi-Dan GUO ; Lu-Tong WANG ; Xiao-Yuan ZHANG ; Shu ZHANG ; Qi YAN ; Rong ZHANG ; Jie CHEN ; Feng-Tang YANG ; Jing-Rui LI
Asian Journal of Andrology 2025;27(2):261-267
Spermatogenesis is a fundamental process that requires a tightly controlled epigenetic event in spermatogonial stem cells (SSCs). The mechanisms underlying the transition from SSCs to sperm are largely unknown. Most studies utilize gene knockout mice to explain the mechanisms. However, the production of genetically engineered mice is costly and time-consuming. In this study, we presented a convenient research strategy using an RNA interference (RNAi) and testicular transplantation approach. Histone H3 lysine 9 (H3K9) methylation was dynamically regulated during spermatogenesis. As Jumonji domain-containing protein 1A (JMJD1A) and Jumonji domain-containing protein 2C (JMJD2C) demethylases catalyze histone H3 lysine 9 dimethylation (H3K9me2), we firstly analyzed the expression profile of the two demethylases and then investigated their function. Using the convenient research strategy, we showed that normal spermatogenesis is disrupted due to the downregulated expression of both demethylases. These results suggest that this strategy might be a simple and alternative approach for analyzing spermatogenesis relative to the gene knockout mice strategy.
Spermatogenesis/physiology*
;
Animals
;
Male
;
Mice
;
Epigenesis, Genetic
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Histones/metabolism*
;
RNA Interference
;
Testis/metabolism*
;
Methylation
;
Mice, Knockout
;
Histone Demethylases
7.Application of OSCE-guided Scenario-based Practical Teaching Model in Clinical Pharmacist Training
Tiantian TANG ; Yiwen XIAO ; Haiyan YUAN ; Qiong LU ; Ying WANG ; Wenhui LIU ; Shenglan TAN ; Bikui ZHANG ; Daxiong XIANG ; Yan CHENG ; Yangang ZHOU ; Ping XU
Chinese Journal of Modern Applied Pharmacy 2024;41(10):1409-1414
OBJECTIVE
To explore the specific application and evaluation effect of objective structured clinical examination(OSCE)-guided scenario-based practical teaching mode in training clinical pharmacists.
METHODS
Fifty-six trainees who participated in the clinical pharmacist training program in the Second Xiangya Hospital of Central South University from October 2020 to September 2022 were selected as the research objects. OSCE-guided teaching was conducted, and the application effect of OSCE-guided teaching mode in clinical pharmacist training was explored and analyzed by using theoretical examination results and OSCE assessment results as evaluation indicators.
RESULTS
Through comparative analysis, it was found that the OSCE-guided teaching mode not only enabled students to better grasp the theoretical knowledge points required by the training outline, but also improved their clinical thinking ability, problem-solving ability, and communication and coordination skills to varying degrees.
CONCLUSION
For clinical pharmacist trainees, the OSCE teaching mode is conducive to the comprehensive improvement of clinical pharmacist skills and is suitable for cultivating clinical pharmacists who are capable of independently carrying out clinical pharmacy services in the new situation.
8.Effect of apoptosis-inducing factor gene knockdown on bone marrow mesenchymal stem cell transplantation for myocardial infarction
Dunzheng HAN ; Xiaozhou QIN ; Xiudi PAN ; Waner LU ; Ying DAI ; Yanxun CHEN ; Xianfei CHENG ; Muhan TANG
Chinese Journal of Tissue Engineering Research 2024;28(25):3967-3973
BACKGROUND:Numerous basic and clinical trials have confirmed that the low survival rate after bone marrow mesenchymal stem cell transplantation is a serious constraint on its long-term therapeutic effect.Previous studies have shown that apoptosis-related factors play an important role in the apoptosis of bone marrow mesenchymal stem cells,of which apoptosis-inducing factor may be a key factor. OBJECTIVE:Bone marrow mesenchymal stem cells,of which apoptosis-inducing factor was knocked down,were transplanted into infarcted myocardium of mice,aiming to certify the importance of apoptosis-inducing factor in the survival of bone marrow mesenchymal stem cells to further recover cardiac function after infarction. METHODS:Firstly,bone marrow mesenchymal stem cells were infected with LV-AIF-shRNA lentivirus to down-regulate the expression of apoptosis-inducing factor protein.Flow cytometry,western blot assay,and RT-qPCR were used to detect the infection efficiency of lentivirus.CCK-8 assay was used to detect the cell viability of bone marrow mesenchymal stem cells with apoptosis-inducing factor knockdown under hypoxic and ischemic conditions.Then,with the mouse model of acute myocardial infarction constructed,the normal bone marrow mesenchymal stem cells and bone marrow mesenchymal stem cells with apoptosis-inducing factor gene knockdown were transplanted into the model,respectively.The expression of apoptosis-inducing factor was examined by fluorescence immunoassay.Serum brain natriuretic peptide levels were detected by ELISA.Cardiac ultrasound was used to detect cardiac function.Myocardial fibrosis was observed by Masson staining.The expression of SRY gene was detected by RT-qPCR in apoptosis-inducing factor-knocked bone marrow mesenchymal stem cells after transplantation,reflecting cell survival. RESULTS AND CONCLUSION:(1)Bone marrow mesenchymal stem cells with apoptosis-inducing factor gene knockdown were successfully established by LV-AIF-shRNA lentivirus infection,following 97.7%of infection efficiency,and notably decline of the expression of apoptosis-inducing factor(P<0.001).(2)Under ischemia and hypoxia,the cell viability of apoptosis-inducing factor knockdown bone marrow mesenchymal stem cells was significantly increased compared with normal bone marrow mesenchymal stem cells.(3)Compared with normal bone marrow mesenchymal stem cells after transplantation,the survival number of bone marrow mesenchymal stem cells in the infarcted myocardium after apoptosis-inducing factor gene knockdown was significantly increased to 3.71 times(P<0.001),and the apoptosis-inducing factor protein expression and myocardial fibrosis degree in the infarcted area were significantly reduced.(4)Compared with normal bone marrow mesenchymal stem cells,the serum brain natriuretic peptide level of bone marrow stem cells with apoptosis-inducing factor gene knockdown after transplantation was significantly decreased(P<0.05),and left ventricular ejection fraction and left ventricular shortening fraction were significantly improved(P<0.05).(5)These findings confirm that apoptosis-inducing factor gene knockdown can reduce myocardial fibrosis and improve cardiac function after acute myocardial infarction via enhancing the bone marrow mesenchymal stem cell viability and increasing the bone marrow mesenchymal stem cell survival after transplantation in the donor.
9.Exploration of the teaching reform of International Classification of Diseases and evaluation of effectiveness
Lu TANG ; Jiaxu CHEN ; Ying SHE ; Bingjue XIE ; Ping SONG
Chinese Journal of Medical Education Research 2024;23(6):787-790
Objective:To explore the reform practice and teaching effect of flipped classroom combined with case-based learning (CBL) in the undergraduate teaching of International Classification of Diseases.Methods:The undergraduates of Chongqing Medical University majoring in information management and information system from the classes of 2018 and 2019 were selected as the control group and the experimental group, respectively, and the undergraduates in the control group received lecture-based learning, while those in the experimental group received flipped classroom combined with CBL. After teaching, theoretical assessment and practical skill assessment were performed to evaluate learning effect. R3.6.3 was used to perform statistical analyses; the t-test or the rank-sum test (Mann-Whitney U test) was used for comparison of continuous data between groups, and the chi-square test was used for comparison of categorical data. Results:There were no significant differences between the two groups in the general information such as age and sex distribution ( t=-1.22, P=0.227; χ2=1.77, P=0.183). There was no significant difference in theoretical assessment score between the two groups [(78.84±8.97) vs. (76.01±8.65), P=0.140]. Compared with the control group, the experimental group had significantly better results in the correct rate of ICD coding [(94.34±3.22)% vs. (91.36±2.79)%, P=0.006] and the number of coded copies per person per day [15.41 (7.90, 40.97) vs. 7.22 (2.33, 8.83), P=0.006], as well as a better level of practical skills. Conclusions:Flipped classroom combined with CBL can help to enhance the hands-on ability to solve problems among students, thereby improving the overall teaching effect.
10.Analysis of three-dimensional visualization imaging of severe portal vein stenosis after liver transplantation and clinical efficacy of portal vein stent implantation
Hongqiang ZHAO ; Ying LIU ; Jianming MA ; Ang LI ; Lihan YU ; Xuan TONG ; Guangdong WU ; Qian LU ; Yuewei ZHANG ; Rui TANG
Organ Transplantation 2024;15(1):82-89
Objective To analyze three-dimensional imaging characteristics and advantages for severe portal vein stenosis after liver transplantation, and to evaluate clinical efficacy of portal vein stent implantation. Methods Clinical data of 10 patients who received portal vein stent implantation for severe portal vein stenosis after liver transplantation were retrospectively analyzed. Imaging characteristics of severe portal vein stenosis, and advantages of three-dimensional reconstruction imaging and interventional treatment efficacy for severe portal vein stenosis were analyzed. Results Among 10 patients, 3 cases were diagnosed with centripetal stenosis, tortuosity angulation-induced stenosis in 2 cases, compression-induced stenosis in 2 cases, long-segment stenosis and/or vascular occlusion in 3 cases. Three-dimensional reconstruction images possessed advantages in accurate identification of stenosis, identification of stenosis types and measurement of stenosis length. All patients were successfully implanted with portal vein stents. After stent implantation, the diameter of the minimum diameter of portal vein was increased [(6.2±0.9) mm vs. (2.6±1.7) mm, P<0.05], the flow velocity at anastomotic site was decreased [(57±19) cm/s vs. (128±27) cm/s, P<0.05], and the flow velocity at the portal vein adjacent to the liver was increased [(41±6) cm/s vs. (18±6) cm/s, P<0.05]. One patient suffered from intrahepatic hematoma caused by interventional puncture, which was mitigated after conservative observation and treatment. The remaining patients did not experience relevant complications. Conclusions Three-dimensional visualization technique may visually display the location, characteristics and severity of stenosis, which is beneficial for clinicians to make treatment decisions and assist interventional procedures. Timely implantation of portal vein stent may effectively reverse pathological process and improve portal vein blood flow.


Result Analysis
Print
Save
E-mail