1.Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating Parkinson's Disease Based on Lipidomics
Ningxia LU ; Ao GAO ; Yehao WANG ; Jinjin YANG ; Yi LU ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):91-99
ObjectiveAbnormal lipids in neurons can cause the accumulation of α-synuclein(α-syn). This study aimed to explore the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) mice using lipidomics combined with network pharmacology. MethodsMice were divided into the blank group, model group and ASH (45.5 mg·kg-1) group. Motor ability was evaluated by pole climbing time and autonomous activity count; The oxidative stress indicators were detected by enzyme-linked immunosorbent assay (ELISA). Lipid biomarkers in brain tissues were screened and identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and metabolic pathway analysis was conducted. The key targets of ASH for PD treatment were explored using network pharmacology. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway enrichment analysis, and the "compound-reaction-enzyme-gene" network was constructed using the MetScape plugin. The protein expression levels of glutathione S-transferase P1 (GSTP1), glutathione S-transferase Mu 2 (GSTM2), prostaglandin peroxide synthase 1 (PTGS1), prostaglandin peroxide synthase 2 (PTGS2), and prostaglandin E synthase (PTGES) were validated by Western blot. ResultsCompared with the blank group, the model group showed significantly prolonged pole climbing time and reduced autonomous activity count (P<0.01). Compared with the model group, the ASH group demonstrated significantly faster pole climbing and increased autonomous activity count (P<0.01). The model group exhibited significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, and increased malondialdehyde (MDA) level in brain tissues compared with the blank group (P<0.01). The ASH group showed increased SOD and GSH-Px levels and decreased MDA level compared with the model group (P<0.05, P<0.01). Lipidomics analysis identified 10 differential metabolites and 8 differential metabolic pathways. Network pharmacological analysis revealed 213 intersection targets between ASH components and PD, with KEGG enrichment involving the sphingolipid signaling pathway, lipid arteriosclerosis, phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, and hypoxia inducible factor-1(HIF-1) signaling pathway. Integrated lipidomics and network pharmacology analysis highlighted the central role of the arachidonic acid metabolic pathway. The Western blot results showed that ASH effectively up-regulated GSTP1, GSTM2, and PTGS1 protein expression, and down-regulated PTGS2 and PTGES protein expression. ConclusionASH can ameliorate behavioral deficits, exert antioxidant effects, regulate lipid differential metabolites and the arachidonic acid metabolic pathway, thereby exerting therapeutic effects in PD model mice.
2.The Adoption of Non-invasive Photobiomodulation in The Treatment of Epilepsy
Ao-Yun LI ; Zhan-Chuang LU ; Li CAO ; Si CHEN ; Hui JIANG ; Chang-Chun CHEN ; Lei CHEN
Progress in Biochemistry and Biophysics 2025;52(4):882-898
Epilepsy is a chronic neurological disease caused by abnormal synchronous discharge of the brain, which is characterized by recurrent and transient neurological abnormalities, mainly manifested as loss of consciousness and limb convulsions, and can occur in people of all ages. At present, anti-epileptic drugs (AEDs) are still the main means of treatment, but their efficacy is limited by the problem of drug resistance, and long-term use can cause serious side effects, such as cognitive dysfunction and vital organ damage. Although surgical resection of epileptic lesions has achieved certain results in some patients, the high cost and potential risk of neurological damage limit its scope of application. Therefore, the development of safe, accurate and personalized non-invasive treatment strategies has become one of the key directions of epilepsy research. In recent years, photobiomodulation (PBM) has gained significant attention as a promising non-invasive therapeutic approach. PBM uses light of specific wavelengths to penetrate tissues and interact with photosensitive molecules within cells, thereby modulating cellular metabolic processes. Research has shown that PBM can enhance mitochondrial function, promote ATP production, improve meningeal lymphatic drainage, reduce neuroinflammation, and stimulate the growth of neurons and synapses. These biological effects suggest that PBM not only holds the potential to reduce the frequency of seizures but also to improve the metabolic state and network function of neurons, providing a novel therapeutic avenue for epilepsy treatment. Compared to traditional treatment methods, PBM is non-invasive and avoids the risks associated with surgical interventions. Its low risk of significant side effects makes it particularly suitable for patients with drug-resistant epilepsy, offering new therapeutic options for those who have not responded to conventional treatments. Furthermore, PBM’s multi-target mechanism enables it to address a variety of complex etiologies of epilepsy, demonstrating its potential in precision medicine. In contrast to therapies targeting a single pathological mechanism, PBM’s multifaceted approach makes it highly adaptable to different types of epilepsy, positioning it as a promising supplementary or alternative treatment. Although animal studies and preliminary clinical trials have shown positive outcomes with PBM, its clinical application remains in the exploratory phase. Future research should aim to elucidate the precise mechanisms of PBM, optimize light parameters, such as wavelength, dose, and frequency, and investigate potential synergistic effects with other therapeutic modalities. These efforts will be crucial for enhancing the therapeutic efficacy of PBM and ensuring its safety and consistency in clinical settings. This review summarizes the types of epilepsy, diagnostic biomarkers, the advantages of PBM, and its mechanisms and potential applications in epilepsy treatment. The unique value of PBM lies not only in its multi-target therapeutic effects but also in its adaptability to the diverse etiologies of epilepsy. The combination of PBM with traditional treatments, such as pharmacotherapy and neuroregulatory techniques, holds promise for developing a more comprehensive and multidimensional treatment strategy, ultimately alleviating the treatment burden on patients. PBM has also shown beneficial effects on neural network plasticity in various neurodegenerative diseases. The dynamic remodeling of neural networks plays a critical role in the pathogenesis and treatment of epilepsy, and PBM’s multi-target mechanism may promote brain function recovery by facilitating neural network remodeling. In this context, optimizing optical parameters remains a key area of research. By adjusting parameters such as wavelength, dose, and frequency, researchers aim to further enhance the therapeutic effects of PBM while maintaining its safety and stability. Looking forward, interdisciplinary collaboration, particularly in the fields of neuroscience, optical engineering, and clinical medicine, will drive the development of PBM technology and facilitate its transition from laboratory research to clinical application. With the advancement of portable devices, PBM is expected to provide safer and more effective treatments for epilepsy patients and make a significant contribution to personalized medicine, positioning it as a critical component of precision therapeutic strategies.
3.Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function.
Yuheng JIN ; Xuxin QI ; Xiaoli YU ; Xirui CHENG ; Boya CHEN ; Mingfei WU ; Jingyu ZHANG ; Hao YIN ; Yang LU ; Yihui ZHOU ; Ao PANG ; Yushen LIN ; Li JIANG ; Qiuqiu SHI ; Shuangshuang GENG ; Yubo ZHOU ; Xiaojun YAO ; Linjie LI ; Haiting DUAN ; Jinxin CHE ; Ji CAO ; Qiaojun HE ; Xiaowu DONG
Acta Pharmaceutica Sinica B 2025;15(3):1659-1679
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
4.Glutathione Detection Method Based on Electron Paramagnetic Resonance Spectroscopy
Zhi-Wen WANG ; Jian KUANG ; Ao-Kun LIU ; Ruo-Tong WEI ; Lu YU ; Chang-Lin TIAN
Progress in Biochemistry and Biophysics 2024;51(11):3034-3045
ObjectiveGlutathione (γ-glutamyl-L-cysteinylglycine, GSH) is the most abundant non-protein compound containing sulfhydryl (―SH) groups in cells. It serves as a source of reducing equivalents, effectively neutralizing harmful reactive substances, and playing a crucial role in maintaining cellular redox balance. Therefore, sensitive detection and accurate measurement of GSH levels in tissues are of great importance. In this work, we presents a novel method for GSH detection utilizing electron paramagnetic resonance (EPR) spectroscopy. MethodsInitially, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate acid)) solution was mixed with K2S2O8 solution and reacted in the dark for 12 to 16 h to prepare ABTS·+ solution, which was then quantified using UV-Vis spectroscopy. Subsequently, the concentration of glutathione (GSH) was determined based on the changes in the EPR signal of ABTS·+. On this basis, the optimal reaction time and temperature were explored to establish a standard equation correlating the EPR signal intensity of ABTS·+ with GSH concentration. Finally, the derived standard curve was employed to quantitatively analyze the GSH concentration in whole blood from C57BL/6J mice, and the results were compared with those reported in the literature to verify the accuracy of the method. ResultsThe experimental results demonstrate that this method has a linear detection range from50 nmol/L to 15 μmol/L for GSH, spanning two orders of magnitude, with a limit of detection (LOD) at0.50 nmol/L. The measured GSH content in mouse whole blood is (10 660±706) nmol/g Hb, which agrees with the value of (11 200±237) nmol/g Hb as previously reported. Furthermore, a similar method was developed for detection of glutathione disulfide (GSSG) at higher reaction temperature. ConclusionThis article presents a novel assay for the rapid detection of GSH using the intensity of EPR signal from ABTS·+ as indicator. This method demonstrates enhanced detection sensitivity and a broader linear range compared to conventional colorimetric methods. Furthermore, we have extended the application of this method to detect GSH content in blood samples efficiently and accurately, offering valuable information for assessing tissue redox balance, thus holding significant potentials.
5.The effect and mechanism of Lycium barbarum leaves on D -galactose-induced cataract in rats based on metabolomics
Cong LU ; Shu-lan SU ; Yue ZHU ; Sheng GUO ; Da-wei QIAN ; Hong-jie KANG ; Lan-ping GUO ; Jin-ao DUAN
Acta Pharmaceutica Sinica 2024;59(9):2594-2605
Evaluate the interventional effect of
6.Integrating proteomics and targeted metabolomics to reveal the material basis of liver-gallbladder damp-heat syndrome in chronic hepatitis B
LI Ni&rsquo ; ao ; GONG Yuefeng ; WANG Jia ; CHEN Qingqing ; SU Shibing ; ZHANG Hua ; LU Yiyu
Digital Chinese Medicine 2024;7(4):320-331
Methods:
CHB patients and healthy volunteers were enrolled from Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine between August 21, 2018 and December 31, 2020. They were divided into three groups: healthy group, LGDHS group, and latent syndrome (LP) group. Proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) was performed to identify differentially expressed proteins (DEPs). Metabolomic profiling via ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was applied to serum samples to detect differentially regulated metabolites (DMs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment were employed to explore dysregulated pathways. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to visualize group separation and identify key metabolites and proteins contributing to LGDHS differentiation. Receiver operating characteristic (ROC) curve analysis evaluated the diagnostic performance of key biomarkers, while logistic regression models assessed their predictive accuracy. P values were corrected for multiple tests using the Benjamini-Hochberg method to control the false discovery rate (FDR). Validation of potential biomarkers was conducted using independent microarray data and real-time quantitative polymerase chain reaction (RT-qPCR).
Results:
A total of 150 participants were enrolled, including healthy group (n = 45), LGDHS group (n = 60), and LP group (n = 45). 254 DEPs from proteomics data and 72 DMs from metabolomic profiling were identified by PCA and OPLS-DA. DEPs were mainly enriched in immune and complement pathways, while DMs involved in amino acid and energy metabolism. The integrated analysis identified seven key biomarkers: α1-acid glycoprotein (ORM1), asparagine synthetase (ASNS), solute carrier family 27 member 5 (SLC27A5), glucosidase II alpha subunit (GANAB), hexokinase 2 (HK2), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and maltase-glucoamylase (MGAM). Microarray validation confirmed the diagnostic potential of these genes, with area under the curve (AUC) values for ROC analysis ranging from 0.536 to 0.759. Among these, ORM1, ASNS, and SLC27A5 showed significant differential ability in differentiating LGDHS patients (P = 0.016, P = 0.035, and P < 0.001, respectively), with corresponding AUC of 0.749, 0.743, and 0.759, respectively. A logistic regression model incorporating these three genes demonstrated an AUC of 0.939, indicating a high discriminatory power for LGDHS. RT-qPCR further validated the differential expression of ORM1 and SLC27A5 between LGDHS and LP groups (P = 0.011 and P = 0.034, respectively), with ASNS showing a consistent trend in expression (P = 0.928).
Conclusion
This study integrates multi-omics approaches to uncover the molecular mechanisms underlying LGDHS in CHB. The identification of biomarkers ORM1, ASNS, and SLC27A5 offers a solid basis for the objective diagnosis of LGDHS, contributing to the standardization and modernization of TCM diagnostic practices.
7.A new hexacyclic triterpenoid with 13α ,27-cyclopropane ring from Glechoma longituba
Qian ZHANG ; Mei-long LU ; Tian-zi LIU ; Yue-ting ZHANG ; Ao ZHU ; Li-li DING ; Zhu-zhen HAN ; Li-hua GU ; Zheng-tao WANG
Acta Pharmaceutica Sinica 2024;59(5):1334-1340
In order to study the compounds from
8.The intervention effect of Lycium barbarum leaves on letrozole-induced PCOS mice based on microbiome
Xin-yue ZHANG ; Cong LU ; Hui-li ZHENG ; Shu-lan SU ; Yue ZHU ; Sheng GUO ; Da-wei QIAN ; Hong-jie KANG ; Jin-ao DUAN
Acta Pharmaceutica Sinica 2024;59(7):2030-2040
The purpose of this study was to investigate the intervention effect and mechanism of
9.Surveillance of the population density of adult Aedes albopictus in Guangdong Province from 2018 to 2023
Ruipeng LU ; Mingji CHENG ; Ao LUO ; Yating CHEN ; Min LUO ; Jinhua DUAN ; Zongjing CHEN ; Yuwen ZHONG ; Shengjun HU ; Hui DENG
Chinese Journal of Schistosomiasis Control 2024;36(6):591-597
Objective To investigate the fluctuations in the population density of Aedes albopictus and changes in the population density of Ae. albopictus in different geographical areas and different breeding habitats in Guangdong Province from 2018 to 2023, so as to provide insights into prevention and control of mosquito-borne infectious diseases in the province. Methods Ae. albopictus surveillance sites were assigned in 1 609 townships (streets) from 121 districts (counties) of 21 cities in Guangdong Province during the period between March and November from 2018 to 2023. The surveillance of the population density of Ae. albopictus was performed once a month in each surveillance site, and once a month in specific settings in cities where dengue were highly prevalent in Guangdong Province from December to February of the next year during the period from 2018 through 2023. Four streets (villages) were selected in each surveillance site according to the geographic orientation, and mosquito ovitraps were assigned in gardens, rooftops or public green belts at residential areas, parks, hospitals and construction sites. All mosquito ovitraps were collected, and the mosquito ovitrap index (MOI) was calculated. The population density of Ae. albopictus was classified into four grades in each surveillance site according to MOI, including no risk, low risk, medium risk and high risk. The risk classification of the Ae. albopictus density was analyzed in each surveillance site each year from 2018 to 2023, and the population density of Ae. albopictus was analyzed at different months and in different geographical areas and breeding habitats. Results A total of 118 241 Ae. albopictus surveillance sites were assigned in 21 cities of Guangdong Province from 2018 to 2023, and there were 68.26% of the surveillance sites with the population density of Ae. albopictus that met the requirements for dengue prevention and control, among which low, medium and high risk surveillance sites accounted for 23.61%, 6.67% and 1.47%. The risk classification of the Ae. albopictus density increased rapidly in Guangdong Province since April to May each year from 2018 to 2023, and then gradually reduced since September to October, with the peak during the period between May and July. The mean MOI was 4.21 at each surveillance site in Guangdong Province during the period from 2018 to 2023, with 4.69, 4.80, 4.38, 3.82, 3.38, and 4.33 from 2018 to 2023, respectively. The MOI was 4.35, 4.43, 3.53 and 3.58 in the Pearl River Delta region, and eastern, western, and northern Guangdong Province, respectively, and was 4.18, 5.44, 4.75, 3.24, 4.27 and 3.70 in residential areas, parks, construction sites, hospitals, waste collection stations, and other breeding habitats, respectively. Conclusions The population density of adult Ae. albopictus peaked in Guangdong Province during the period between May and July from 2018 to 2023, with a high density of Ae. albopictus in the Pearl River Delta region and eastern Guangdong Province. Targeted Ae. albopictus control measures are recommended to be implemented prior to the peak of the Ae. albopictus population density to reduce the development of mosquito-borne infectious diseases.
10.Analysis of the Inpatient Spatial Flow and Influencing Factors in Sichuan Province
Lu AO ; Xiao LIU ; Jie PAN ; Chao SONG ; Xiuli WANG
Chinese Hospital Management 2024;44(4):44-50
Objective To analysis the current situation of hospitalized patients seeking medical treatment across different counties and the influencing factors from both the inflow and outflow perspectives.Methods Using the fourth quarter data of 2019 from the medical record index,with Sichuan Province as the research area,it analyzed the spatial flow of patients based on the patient's county of residence,the county where the hospital is located,and the number of mobile patients.By combining information at the individual patient level,healthcare institution level,and county level,it established two-level random intercept logistic regression analysis to explore the influencing factors from the perspectives of inflow and outflow.Results The proportion of patients seeking medical treatment across different counties in Sichuan is 22.90%.The majority of patients,with a population of over one thousand,are concentrated in the eastern region.However,the western region has a higher proportion of patients seeking medical treatment across counties.Chengdu and Mianyang are both the largest sources and recipients of patient flows.Being Han Chinese(49%,P<0.001),male(2%,P<0.001),Stable income(6%,P<0.001)and better medical insurance coverage(16%,P<0.001)at the patient level,as well as better healthcare resources at the institutional level,and higher economic(20%,P<0.001)and medical levels(5%,P<0.001)at the district and county level promote patients seeking medical treatment across counties.Conclusion Hospitalized patients in Sichuan Province tend to seek medical treatment from surrounding counties towards the county centers,as well as flowing to Chengdu from various locations.Promoting hierarchical medical treatment and encouraging patients to seek appropriate medical services can be achieved through strengthening patient health education,improving healthcare service levels,and promoting coordinated development between the economy and medical industry.

Result Analysis
Print
Save
E-mail