1.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
2.Research progress on interactions between medicinal plants and microorganisms.
Er-Jun WANG ; Ya-Long ZHANG ; Xiao-Hui MA ; Hua-Qian GONG ; Shao-Yang XI ; Gao-Sen ZHANG ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(12):3267-3280
The interactions between microorganisms and medicinal plants are crucial to the quality improvement of medicinal plants. Medicinal plants attract microorganisms to colonize by secreting specific compounds and provide niche and nutrient support for these microorganisms, with a symbiotic network formed. These microorganisms grow in the rhizosphere, phyllosphere, and endophytic tissues of plants and significantly improve the growth performance and medicinal component accumulation of medicinal plants by promoting nutrient uptake, enhancing disease resistance, and regulating the synthesis of secondary metabolites. Microorganisms are also widely used in the ecological planting of medicinal plants, and the growth conditions of medicinal plants are optimized by simulating the microbial effects in the natural environment. The interactions between microorganisms and medicinal plants not only significantly improve the yield and quality of medicinal plants but also enhance their geoherbalism, which is in line with the concept of green agriculture and eco-friendly development. This study reviewed the research results on the interactions between medicinal plants and microorganisms in recent years and focused on the analysis of the great potential of microorganisms in optimizing the growth environment of medicinal plants, regulating the accumulation of secondary metabolites, inducing systemic resistance, and promoting the ecological planting of medicinal plants. It provides a scientific basis for the research on the interactions between medicinal plants and microorganisms, the research and development of microbial agents, and the application of microorganisms in the ecological planting of medicinal plants and is of great significance for the quality improvement of medicinal plants and the green and sustainable development of TCM resources.
Plants, Medicinal/metabolism*
;
Bacteria/genetics*
;
Symbiosis
3.Comparison of short-term clinical efficacy between CO external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures.
Min-Rui FU ; Chang-Long SHI ; Yong-Zhong CHENG ; Ming-Ming MA ; Zheng-Lin NIU ; Hai-Xiang SUN ; Jing-Hua GAO ; Zhong-Kai WU ; Yi-Ming XU
China Journal of Orthopaedics and Traumatology 2025;38(1):10-17
OBJECTIVE:
To evaluate the short-term clinical efficacy of external fixation and internal fixation with steel plate in the treatment of unstable distal radius fractures (AO-23C type), based on the principles of Chinese osteosynthesis (CO).
METHODS:
Forty-eight patients with unstable distal radius fractures between January 2022 and February 2023 were retrospectively analyzed and divided into the CO external fixation group and internal fixation group. CO external fixation group consisted of 25 patients, including 7 males and 18 females, aged from 37 to 56 years old with an average of ( 52.6±11.3) years old. Among them, there were 7 patients of traffic accidents and 18 patients of falls, resulting in a total of 25 patients of closed fractures and no open fractures, the treatment was conducted using closed reduction and CO external fixation. The internal fixation group consisted of 23 patients, comprising 8 males and 15 females, age ranged from 41 to 59 years old, with an average age of(53.3±13.7) years old. Among them, 8 patients resulted from car accidents while the remaining 15 patients were caused by falls. All 23 patients were closed fractures without any open fractures observed. The technique of open reduction and internal fixation with steel plate was employed. The perioperative data, including injury-operation time, operation duration, blood loss, and length of hospital stay, were assessed in both groups. Additionally, the QuickDASH score and visual analogue scale (VAS) were evaluated. Range of motion and grip strength assessment, imaging findings such as palmar inclination angle, ulnar declination angle, radius length, articular surface step, intra-articular space measurements were also examined along with any complications.
RESULTS:
The follow-up duration ranged from 0 to 24 months, with an average duration of (16.0±3.8) months. The CO external fixation exhibited significantly shorter time from injury to operation (2.4±3.3) d vs (7.4±3.7) d, shorter operation duration (56.27±15.23) min vs (74.10±5.26) min, lower blood loss (14.52±6.54) ml vs (32.32±10.03) ml, and reduced hospitalization days (14.04±3.24 )d vs (16.45±3.05) d compared to the internal fixation group (P<0.05). The QuickDASH score at 12 months post-operation was (8.21±1.64) in the CO external fixation group, while no significant difference was observed in the internal fixation group (7.04±3.64), P>0.05. There were no statistically significant differences in VAS between two groups at 6 weeks, as well as 1 and 3 months post-surgery (P>0.05). Additionally, there were no significant disparities observed in terms of range of motion and grip strength between two groups at the 2-year follow-up after the operation (P>0.05). After 12 months of surgery, the CO external fixation group exhibited a significantly smaller palmar inclination angle (17.90±2.18) ° vs (19.87±3.21) °, reduced articular surface step (0.11±0.03) mm vs (0.17±0.02) mm, and shorter radius length (8.16±1.11) mm compared to the internal fixation group (9.59±1.02) mm, P<0.05. The ulnar deviation angle and intra-articular space did not show any significant difference between two groups (P>0.05). The reduced fell within the allowable range between the CO external fixation group (23 out of 25 cases) and the internal fixation group (21 out of 23 cases) was not statistically significant (P=0.29). There was no significant difference in complications between the two groups(P>0.05).
CONCLUSION
Both the CO external fixation and open reduction with plate internal fixation demonstrate clinical efficacy in managing unstable distal radius fractures. The CO external fixation offers advantages in shorter injury-to-operation times, reduced intraoperative blood loss, and decreased surgical durations, while radial shortening is more effectively controlled by internal fixation.
Humans
;
Male
;
Female
;
Middle Aged
;
Radius Fractures/physiopathology*
;
Adult
;
Bone Plates
;
Fracture Fixation, Internal/methods*
;
External Fixators
;
Retrospective Studies
;
Fracture Fixation/methods*
;
Wrist Fractures
4.Role of intestinal flora in hypertension complicated with osteoporosis
Mei-Long SI ; Hua JIN ; Min-Ke LIU ; Shuang-Fang LIU ; Bi-Shi LING ; Shang-Wen QI ; Xue-Li MA
The Chinese Journal of Clinical Pharmacology 2024;40(3):449-453
Hypertension and osteoporosis(OP)are common diseases in middle-aged and elderly people,and the number of patients with both diseases has gradually increased in recent years.Because the onset of the disease is hidden,it is easy to cause fractures and serious complications of heart,brain and kidney in the later stage,which not only seriously damages the quality of life of patients,but also increases the difficulty of clinical treatment.Therefore,it is particularly necessary to strengthen the research on this disease.More and more studies have found that the disorder of intestinal flora will lead to the occurrence of OP,while the intestinal flora of patients with hypertension is obviously out of balance.Therefore,this paper thinks that intestinal flora may be the key influencing factor of hypertension complicated with OP,and the imbalance of intestinal flora will lead to the imbalance of short-chain fatty acid metabolism,immune inflammatory reaction and increased sympathetic nerve activity,thus causing the imbalance of bone homeostasis and promoting the occurrence of OP.Therefore,it is suggested that regulating intestinal flora may be a new way to intervene hypertension complicated with OP.
5.Application status and research progress of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery
Bao-Hua YUAN ; Hai-Ping LIU ; Xing-Yong LI ; Xiao-Ting LIU ; Ji-Hai MA ; Xu-Sheng ZHANG ; Hao-Fei YANG ; Jin-Sheng LI ; Sheng-Long HAN
The Chinese Journal of Clinical Pharmacology 2024;40(7):1080-1084
Tranexamic acid is widely used in joint orthopedic surgery.At the same time,it has high safety and few adverse drug reactions.It can effectively improve intraoperative bleeding and promote early functional recovery of patients.This article reviews the mode of administration,safe dose,administration time and adverse drug reactions of tranexamic acid in the perioperative period of joint replacement and arthroscopic surgery,in order to provide reference for the clinical application of tranexamic acid.
6.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.
7.The use of bronchial occlusion test in a preterm infant with severe bronchopulmonary dysplasia complicated by severe lobar emphysema
Hui-Juan LIU ; Rui-Lian GUAN ; Xin QIN ; Huai-Zhen WANG ; Gao-Long ZHANG ; Jian-Bin LI ; Li MA ; Le LI ; Lian-Wei LU ; Yi SUN ; Hua-Yan ZHANG
Chinese Journal of Contemporary Pediatrics 2024;26(6):659-664
In infants with severe bronchopulmonary dysplasia(sBPD),severe pulmonary lobar emphysema may occur as a complication,contributing to significant impairment in ventilation.Clinical management of these infants is extremely challenging and some may require lobectomy to improve ventilation.However,prior to the lobectomy,it is very difficult to assess whether the remaining lung parenchyma would be able to sustain adequate ventilation postoperatively.In addition,preoperative planning and perioperative management are also quite challenging in these patients.This paper reports the utility of selective bronchial occlusion in assessing the safety and efficacy of lobectomy in a case of sBPD complicated by severe right upper lobar emphysema.Since infants with sBPD already have poor lung development and significant lung injury,lobectomy should be viewed as a non-traditional therapy and be carried out with extreme caution.Selective bronchial occlusion test can be an effective tool in assessing the risks and benefits of lobectomy in cases with sBPD and lobar emphysema.However,given the technical difficulty,successful application of this technique requires close collaboration of an experienced interdisciplinary team.
8.One case of coronary interventional treatment of severe stenosis caused by huge calcified plaque at the right coronary artery ostium
Li ZHOU ; Bing HUA ; Long-Hui MA ; Tuo LIANG ; Hui CHEN
Chinese Journal of Interventional Cardiology 2024;32(6):349-352
Coronary artery heavy calcification is always challenging scenarios for interventional cardiologists.Although the treatment strategy guided by intravascular imaging and guaranteed by rotational atherectomy(RA)is recommended by consensus,the application rate of RA in my country is still relatively low.Our center has accumulated a lot of experience in the use of rotational atherectomy to treat severe calcified lesions,especially in complex scenarios such as left main trunk lesions,ostial lesions,and severe vessel tortuosity.Here is a case of interventional treatment of severe eccentric stenosis caused by a huge calcified plaque at the right coronary artery ostium.The method and strategy of plaque modification and partial ablation by intravascular ultrasound-guided RA are discussed.
9.Computer-aided design of an improved lamina hook and finite element analysis of its use in fixation of lumbar spondylolysis
Hongliang GAO ; Hua LIU ; Tao ZHANG ; Chengwei YANG ; Yizhe WANG ; Zirong HUANG ; Wenhua ZHANG ; Long CHEN ; Bing KANG ; Yuxuan MA ; Songkai LI
Chinese Journal of Trauma 2024;40(7):593-604
Objective:To design an improved lamina hook system and compare its biomechanical properties with traditional lamina hook system in fixation of lumbar spondylolysis.Methods:The thin layer CT data of the lumbosacral vertebrae of 20 healthy young male servicemen who underwent physical examination in the outpatient department of the 940th Hospital of Joint Logistics Support Force of PLA from January 2021 to August 2022 were collected. The age of the subjects was 20-30 years [(25.0±3.0)years]. A 3-dimensional model of the L 5 vertebral body was constructed using the 3-dimensional modeling software. The new improved lamina hook was designed according to the measurements including the thickness of the middle area, the longest longitudinal diameter, the curvature radius of the lower edge, the angle between the upper and lower tail ends, the thickness of the lower edge, and the longest diameter of the lower edge of the bilateral L 5 vertebral plates. One serviceman was selected from the aforementioned group to construct a linear finite element model of segments L 4-S using the 3-dimensional virtual software (normal model, model A), based on which, the L 5 bilateral spondylolysis model (model B), improved lamina hook model (model C) and traditional lamina hook models (model D) were designed. By constraining both sides of the sacrum and applying a longitudinal load of 400 N on the L 4 vertebral body, the upper 1/3 gravity of the body was simulated, and with a bending moment of 10 N·m along the X, Y, and Z directions, motions of forward flexion, backward extension, lateral bending, rotation, etc were simulated. The range of motion of segment L 4/5 and L 5/S 1 of model A was evaluated and compared with the findings of the previous researches to verify its effectiveness. The overall range of motion of models A, B, C, and D, the range of motion of segment L 4/5 and L 5/S 1, the maximum overall displacement, the maximum displacement and stress of the isthmus, the stress distribution and maximum stress of internal fixation of models C and D, and the stress distribution and maximum stress of the vertebral body of models C and D were compared. Results:(1) During forward flexion, backward extension, lateral bending and rotation, the range of motion of model A was 5.01°, 4.03°, 3.91° and 1.42° in segment L 4/5, and was 4.62°, 2.51°, 2.40° and 1.23° in segment L 5/S 1. (2) The overall range of motion, range of motion of segment L 4/5 and L 5/S 1 and maximum overall displacement of models A, C, and D were similar in axial compression, forward flexion, backward extension, left bending, and left rotation, while those of model B were significantly increased. (3) There was no significant difference in the maximum displacement of the isthmus of models A, C, and D under different motion modes, while the maximum displacement of model B in the isthmus was significantly larger than that of models A, C, and D, especially during rotation, increased by 295%, 277%, and 276% respectively. The maximum stress of the isthmus of model C was 0.938 MPa, 1.698 MPa, 0.410 MPa, 2.775 MPa, and 1.554 MPa respectively. The maximum stress in the isthmus of model D was 0.590 MPa, 1.297 MPa, 0.520 MPa, 3.088 MPa, and 2.072 MPa respectively. The maximum stress of the isthmus of models C and D was similar during axial compression and forward flexion, while the stress of the isthmus of model C was smaller than that of model D during backward extension, lateral bending, and rotation, decreased by 21.1%, 10.2%, and 25.0% respectively compared with model D. (4) The maximum stress of internal fixation in models C and D during forward flexion, backward extension, left bending, and left rotation was 135.220 MPa, 130.180 MPa, 200.940 MPa and 306.340 MPa respectively, and was 131.840 MPa, 112.280 MPa, 349.980 MPa and 370.140 MPa respectively. The maximum stress of internal fixation in the two models of internal fixation during forward flexion and backward extension was similar, while it was decreased by 42.6% and 17.2% in model C during left bending and left rotation, compared with model D. (5) The maximum stress of the vertebral body during forward flexion, backward extension, left bending, and left rotation was 79.787 MPa, 36.857 MPa, 37.943 MPa and 96.965 MPa respectively in model C, but was 80.104 MPa, 64.236 MPa, 196.010 MPa and 193.020 MPa respectively in model D. The maximum stress of models C and D was all distributed in the contact area with the internal fixation, and especially during backward extension, left bending, and left rotation, when it was reduced by 42.6%, 80.6%, and 49.8% of model C respectively, compared with that of model D. Conclusions:The improved laminar hook is more consistent with the Chinese anatomized structure of the lamina. Compared with the traditional lamina hook system, the improved lamina hook system can effectively reduce the displacement in all directions and range of motion of lumbar spondylolysis, therefor can significantly reduce the stress of internal fixation and vertebral body and has better biomechanical performance.
10.The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair
Lu FAN ; Ying ZHANG ; Xiankun YIN ; Silu CHEN ; Pin WU ; Tianru HUYAN ; Ziyang WANG ; Qun MA ; Hua ZHANG ; Wenhui WANG ; Chunyan GU ; Lu TIE ; Long ZHANG
Tissue Engineering and Regenerative Medicine 2024;21(8):1255-1267
OBJECTIVE:
Surgical wounds that can’t complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.APPROACH: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.
RESULTS:
PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate [ 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.INNOVATION: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.
CONCLUSION
Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.

Result Analysis
Print
Save
E-mail